THE OPTIMAL CONDITIONS FOR TOTAL SALINITY REMOVING FROM WATER USING NEW LOCAL HALOPHILIC BACTERIAL STRAINS
DOI:
https://doi.org/10.36103/k0cpgn62Keywords:
Contact time, , Static culture, , Temperature,, Total dissolved soluble.Abstract
This study was aimed to determine the optimal conditions for removing total salinity from an aqueous solution of known salt concentration 10% using four new bacterial strains that are tolerant to high salinity genetically diagnosed and registered in the international gene bank (NCBI). Modified nutrient broth medium (MNB) was used with the addition of 10% sodium chloride. The ability of the bacterial strains to remove total salinity was tested in terms of the decrease in total dissolved solids (TDS), where the highest removal rate was after 72 hours, at a temperature of 30°C, with an inoculum volume of 1.5% and a pH of 7. The removal rates were higher in static cultures in the same conditions compared to using the vibrating incubator at 100 rpm. The removal rate decreased when using a mixture of the cocci strain with the three other bacillus species, and the removal rates were constant when using a mixture of the bacillus strains. Total desalination rates were obtained using bacterial strains (A, B, C, and D) after applying the optimal conditions obtained from this study (94, 91, 90, and 92) %, respectively.
Received date: 12/4/2024
Accepted date: 21/7/2024
Published date: 26/1/2026
References
Al Zamzami, I. M., Yona, D., Faqih, A. R., & Kurniawan, A. (2025). Halophilic bacteria in biotechnology: A seven-decade scientometric analysis of global research trends, knowledge gaps, and emerging applications (1955–2024). Journal of Ecological Engineering, 26(10), 252-271. doi.org/10.12911/22998993/205826
Ali, A., & Farahat, M. G. (2024). Bioprospecting of culturable halophilic bacteria isolated from mediterranean solar saltern for extracellular halotolerant enzymes. Microbiology and Biotechnology Letters. doi.org/10.48022/mbl.2401.01010
Chen, G. Q., & Jiang, X. R. (2018). Next generation industrial biotechnology based on extremophilic bacteria. Current opinion in biotechnology, 50, 94-100.doi.org/10.1016/j.copbio.2017.11.016.
Crisler, J. D., Chen, F., Clark, B. C., & Schneegurt, M. A. (2019). Cultivation and characterization of the bacterial assemblage of epsomic Basque Lake, BC. Antonie van Leeuwenhoek, 112(7), 1105-1119.. doi.org/10.1007/s10482-019012440.
Hänelt, I., & Müller, V. (2013). Molecular mechanisms of adaptation of the moderately halophilic bacterium Halobacillis halophilus to its environment. Life, 3(1), 234-243.doi.org/10.3390/life3010234
John, J., Dineshram, R., Hemalatha, K. R., Dhassiah, M. P., Gopal, D., & Kumar, A. (2020). Bio-decolorization of synthetic dyes by a halophilic bacterium Salinivibrio sp. Frontiers in Microbiology, 11, 594011.. doi.org/10.3389/fmicb.2020.594011
Kapadia, C., Patel, N., Rana, A., Vaidya, H., Alfarraj, S., Ansari, M. J., ... & Sayyed, R. Z. (2022). Evaluation of plant growth-promoting and salinity ameliorating potential of halophilic bacteria isolated from saline soil. Frontiers in plant science, 13, 946217., /doi.org/10.3389/fpls.2022.946217
Liu, C., Baffoe, D. K., Zhan, Y., Zhang, M., Li, Y., & Zhang, G. (2019). Halophile, an essential platform for bioproduction. Journal of Microbiological Methods, 166, 105704.doi.org/10.1016/j.mimet.2019.105704.
Mesa-Marín, J., Mateos-Naranjo, E., Rodríguez-Llorente, I. D., Pajuelo, E., & Redondo-Gómez, S. (2019). Synergic effects of rhizobacteria: increasing use of halophytes in a changing world. In Halophytes and climate change: adaptive mechanisms and potential uses (pp. 240-254). Wallingford UK: CABI.. doi:10.1079/9781786394330.0240.
Mohamed, A. M., & Al–Shamary, E. I. (2022). Isolation and identification of aflatoxin B1 producing fungi from stored wheat in some silos of Baghdad. Iraqi Journal of Agricultural Sciences, 53(6), 1427-1436.. doi: 10.36103/ijas.v53i6.1659.
Neagu, S., & Stancu, M. M. (2025). Novel Halotolerant Bacteria from Saline Environments: Isolation and Biomolecule Production. BioTech, 14(2), 49. doi.org/10.3390/biotech14020049
Nosalova, L., Piknova, M., Bonova, K., & Pristas, P. (2022). Deep subsurface hypersaline environment as a source of novel species of halophilic sulfur-oxidizing bacteria. Microorganisms, 10(5), 995. doi.org/10.3390/microorganisms10050995
Oakes, J., Kuddus, J. N., Downs, E., Oakey, C., Davis, K., Mohammad, L., ... & Kuddus, R. (2025). Isolation and Characterization of a Crude Oil-Tolerant Obligate Halophilic Bacterium from the Great Salt Lake of the United States of America. Microorganisms, 13(7), 1568. doi.org/10.3390/microorganisms13071568
Olaleye, A. C., Oyewusi, H. A., Akinyede, K. A., Oladipo, O. O., & Oyeyemi, B. F. (2025). Bacterial community structure and secondary metabolite insights from halophiles at Oniru Beach, Lagos. Archives of Microbiology, 207(11), 299. /doi.org/10.1007/s10661-020-08888-5
Oren, A. (2010). Industrial and environmental applications of halophilic microorganisms. Environmental technology, 31(8-9), 825-834.doi: 10.1080/09593330903370026
Puspaningrum, T. C., & Titah, H. S. (2020). The removal of salinity in a reed bed system using mangroves and bacteria in a continuous flow series reactor. Journal of Ecological Engineering, 21(6).doi.org/10.12911/22998993/124075.
Santhaseelan, H., Dinakaran, V. T., Dahms, H. U., Ahamed, J. M., Murugaiah, S. G., Krishnan, M., & Rathinam, A. J. (2022). Recent antimicrobial responses of halophilic microbes in clinical pathogens. Microorganisms, 10(2), 417. doi.org/10.3390/microorganisms10020417
Sedrah, Z. T., Alshamary, E. I., & Nassri, S. K. (2021, May). Isolation and Identification of Alkaline Protease Producing Aspergills niger from Iraqi Soils. In IOP Conference Series: Earth and Environmental Science (Vol. 761, No. 1, p. 012117). IOP Publishing. doi:10.1088/1755-1315/761/1/012117
Thompson, T. P., & Gilmore, B. F. (2024). Exploring halophilic environments as a source of new antibiotics. CritiCal reviews in MiCrobiology, 50(3), 341-370. doi.org/10.1080/1040841X.2023.2197491
Tourova, T. P., Sokolova, D. S., Semenova, E. M., Ershov, A. P., Grouzdev, D. S., & Nazina, T. N. (2022). Genomic and physiological characterization of halophilic bacteria of the genera Halomonas and Marinobacter from petroleum reservoirs. Microbiology, 91(3), 235-248. doi.org/10.1007/s00792-010-0312-9
Uma, G., Babu, M. M., Prakash, V. S. G., Nisha, S. J., & Citarasu, T. (2020). Nature and bioprospecting of haloalkaliphilics: a review. World Journal of Microbiology and Biotechnology, 36(5), 66. doi.org/10.1111/j.13652958.2006.05484.x
Vreeland, R. H. (2020). Taxonomy of halophilic bacteria. In The biology of halophilic bacteria (pp. 105-134). CRC Press. doi: 10.1201/9781003069140.
Yadav, D., Singh, A., Mathur, N., Agarwal, A., & Sharma, J. (2021). Isolation of halophilic bacteria and their screening for extracellular enzyme production. Journal of Scientific & Industrial Research, 80(7), 617-622.doi: 10.56042/jsir.v80i7.39611
Yu, F., Zhao, C., Li, K., Su, L., Zhang, S., Yue, Q., & Zhao, L. (2022, March). Salt-tolerant mechanism and application of salt-tolerant bacteria. In Proceedings of the 2022 International Conference on Green Environmental Materials and Food Engineering, Gemfe, Tianjin, China (pp. 26-27).. doi: 10.25236/gemfe.2022.014.
Yoo, Y., Lee, H., Lee, J., Khim, J. S., & Kim, J. J. (2023). Insights into saline adaptation strategies through a novel halophilic bacterium isolated from solar saltern of Yellow sea. Frontiers in Marine Science, 10, 1229444. doi.org/10.3389/fmars.2023.1229444
Youn, H. Y., & Seo, K. H. (2022). Isolation and characterization of halophilic Kocuria salsicia strains from cheese brine. Food science of animal resources, 42(2), 252.
doi: 10.5851/kosfa.2022.e1
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Ahmed S. A. Salm, Elham I. AL-Shamary

This work is licensed under a Creative Commons Attribution 4.0 International License.

2.jpg)
