INFLUENCE OF EXOGENOUSLY APPLIED GLUTATHIONE AND GIBBERELLIC ACID IN A BEAN UNDER SALT STRESS IN VITRO CONDITIONS
DOI:
https://doi.org/10.36103/tt905z87Keywords:
Calli cultures, abiotic stress, growth, physiology, biochemistry.Abstract
This stady was aimed to investigate effect of treatment with 0, 0.25 and 0.50 mM of Glutathione (GSH) and 0, 1.0 and 2.0 mg L-1 of Gibberellic acid (GA3) in enhancing the growth of calli cultures was tested under normal and critical concentrations of sodium chloride (NaCl). The experiments were conducted during October, 2022 to June 2023 at the plant tissue culture laboratory in Center of Desert Studies, University of Anbar. The experiments designed according to the complete randomized design (CRD). The critical limit of NaCl in calli cultures was determined after 35 days of cultivation in MS medium. The results showed that the concentration of 200 mM caused the highest significant decrease in the fresh weight (FW) and relative fresh weight (RFW) of these cultures, which amounted to 457 mg and -0.086, respectively. However, it did not differ significantly with what was produced by the concentration with 150 mM. As for the salinity experiment, the combination of 0 mM + 0.5 mM + 2.0 mg L-1 for each of NaCl, GSH, and GA3, respectively, was the most consistent in improving the study indicators. This combination achieved the highest significant average for FW, dry weight (DW), RFW, and the effectiveness of Catalase (CAT) which amounted to 973.7 mg, 52.8 mg, 0.947, and 13.119 U mg-1 protein, respectively. However, the combination with the combination of 0 mM + 0.5 mM + 1.0 mg L-1 for each of NaCl, GSH and GA3, respectively, were recorded the lowest significant level of Malondialdehyde (MDA) content, which amounted to 1.951 µM g-1 FW.
References
1. Ahmad, P., M. M. Azooz, and M. N. V. Prasad (Eds.). 2012. Ecophysiology and responses of plants under salt stress. Springer Science & Business Media. pp, 512. doi:10.1007/978-1-4614-4747-4
2. Alexieva, V., I. Sergiev, S. Mapelli, and E. Karanov, 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment, 24:1337–1344. doi:10.1046/j.1365-3040.2001.00778.x
3. Alhasnawi, A. N., A. A. Kadhimi, A. Isahak, A. Mohamad, and et al. 2014. Salinity stress in plant and an important antioxidant enzyme. Life Science Journal, 11(10): 913-920.
4. Al-huraby, A. I. and S. O. Bafeel, 2022. The effect of salinity stress on the Phaseolus vulgaris L. plant. African Journal of Biological Sciences, 4(1): 94-107. doi:10.33472/AFJBS.4.1.2022.94-107
5. Arif, Y., P. Singh, H. Siddiqui, B. Bajguz, and S. Hayat, 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156: 64–77. doi: 10.1016/j.plaphy.2020.08.042
6. Ashraf, M. and M. R. Foolad, 2007. Roles of glycine betaine and proline in improving plant abiotic stress tolerance. Environmental and Experimental Botany, 59: 206–216. doi:10.1016/j.envexpbot.2005.12.006
7. Broadley, M. R. and P. J. White, 2012. Some elements are more equal than others: Soil-to-plant transfer of radiocaesium and radiostrontium, revisited. Plant Soil, 355: 23–27. doi:10.1007/s11104-012-1163-1
8. Colmenero-Flores, J. M., J. D. Franco-Navarro, P. Cubero-Font, P. Peinado-Torrubia, and M. A. Rosales, 2019. Chloride as a beneficial macronutrient in higher plants: New roles and regulation. International Journal of Molecular Sciences, 20: 4686. doi: 10.3390/ijms20194686
9. Gapinska, M., M. Skłodowska, and B. Gabara, 2008. Effect of short-and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiologiae Plantarum, 30: 11–18. doi.org/10.1007/s11738-007-0072-z
10. Geilfus, C. M. 2018. Chloride: From nutrient to toxicant. Plant and Cell Physiology., 59: 877–886. doi:10.1093/pcp/pcy071
11. Hamayun, M., S. A. Khan, A. L. Khan, J. H. Shin, and et al. 2010. Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. Journal of Agrcultural and Food Chemistry, 58:7226–7232. doi:10.1021/jf101221t
12. HanumanthaRao, B., R. M. Nair, and H. Nayyar, 2016. Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Frontiers in Plant Science, 7: 957. doi:10.3389/fpls.2016.00957
13. Hasanuzzaman, M, K. Nahar, T. I. Anee, and M. Fujita, 2017. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology, 23(2):249–268. doi:10.1007/s12298-017-0422-2
14. Hongqiao, L., A. Suyama, N. Mitani-Ueno, R. Hell, and A. Maruyama-Nakashita. 2021. A low level of NaCl stimulates plant growth by improving carbon and sulfur assimilation in Arabidopsis thaliana. Plants, 10: 2138. doi:10.3390/plants10102138
15. Ilias, I., G. Ouzounidou, A. Giannakoula, and P. Papdopoulou, 2007. Effect of gibberellic acid and prohexadione-calcium on growth, chlorophyll fluorescence and quality of okra plant. Biologia Plantarum, 51: 575–578. doi:10.1007/s10535-007-0126-5
16. Jdayea, N. A., S. I. Neamah, and M. A. Alalousi. 2023. Silver nanoparticles reduce the toxic effects of cadmium on Datura stramonium callus culture. International Journal of Agronomy. Volume 2023, Article ID 8281882, 11 pages.
doi: 10.1155/2023/8281882.
17. Jin, X., X. Yang, E. Islam, D. Liu, and Q. Mahmood, 2008. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. Journal of Hazardous Materials, 156:387-390. doi:10.1016/j.jhazmat.2007.12.064.
18. Khalid, A., and F. Aftab, 2020. Effect of exogenous application of IAA and GA3 on growth, protein content, and antioxidant enzymes of Solanum tuberosum L. grown in vitro under salt stress. In Vitro Cellular & Developmental Biology – Plant. 56: 377-389. Doi:10.1007/s11627-019-10047-x
19. Li, Y. 2009. Effects of NaCl stress on antioxidant enzymes of Glycine Soja sieb. Pakistan Journal of Biological Sciences, 12:510–513. doi:10.3923/pjbs.2009.510.513
20. Meloni, D. A., M. A. Oliva, H. A. Ruiz, and C. A. Martinez, 2001. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Journal of Plant Nutrition, 24: 599–612. doi:10.1081/PLN-100104983
21. Misratia, K. M, M. RIslam, M. R. Ismail, F. C. Oad, and et al. 2015. Interactive effects of gibberellic acid (GA3) and salt stress on growth, biochemical parameters and ion accumulation of two rice (Oryza sativa L.) varieties differing in salt tolerance. Journal of Food, Agriculture and Environment, 13 (1): 66-70.
22. Molassiotis, A. N., T. Sotiropoulos, G. Tanou, G. Kofidis, and et al. 2006. Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitiol or sorbitol. Biologia Plantarum, 50: 61–68. doi:10.1007/s10535-006-0046-9
23. Nahar K., M. Hasanuzzaman, M. M. Alam, and M. Fujita, 2015. Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biologia Plantarum 59 (4): 745-756. doi:10.1007/s10535-015-0542-x
24. Nazar, R., N. Iqbal, A. Masood, S. Syeed, and N. A. Khan, 2011. Understanding the significance of sulfur in improving salinity tolerance in plants. Environmental and Experimental Botany, 70:80-87.
25. Neamah, S. I. and N. A. Jdayea, 2022. Positive response of Hyoscyamus pusillus callus cultures to exogenous melatonin on biochemical traits and secondary metabolites under drought conditions. International Journal of Agronomy, Article ID 7447024. doi:10.1155/2022/7447024
26. Rahnama, H., and H. Ebrahimzadeh, 2005. The effect of NaCl on antioxidant enzyme activities in potato seedlings. Biologia Plantarum, 49:93–97. doi:10.1007/s10535-005-3097-4
27. Reynoso-Camacho, R., M. Ramos-Gomez, and G. Loarca-Pina, 2006. Bioactive componentsin common beans (Phaseolus vulgaris L.). Advances in Agricultural and Food Biotechnology, 217-236.
28. Sadak, M. Sh., M. Ebtihal M. Abd Elhamid and M. M. R. M. Ahmed, 2017. Glutathione induced antioxidant protection against salinity stress in chickpea (Cicer arietinum L.) plant. Egyptian Journal of Botany, 57(2): 293 -302. doi:10.21608/ejbo.2017.636.1029
29. Sahraroo, A., M. H. Mirjalili, P. Corchete, M. Babalar, and M. R. F. Moghadam, 2016. Establishment and characterization of a Satureja khuzistanica Jamzad (Lamiaceae) cell suspension culture: a new in vitro source of rosmarinic acid. Cytotechnology 68, 1415–1424. doi:10.1007/s10616-015-9901-x
30. Shakirova, F. M., A. R. Sakhabutdinova, M. V. Bezukova, R. A. Fatkhutdinova, and D. R. Fatkhutdinova, 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164:317– 322. doi:10.1016/S0168-9452(02)00415-6
31. Subbarao, G. V., O. Ito, W. L. Berry, and R. M. Wheeler, 2003. Sodium–A functional plant nutrient. Critical Reviews in Plant Sciences, 22, 391–416. doi:10.1080/07352680390243495
32. Tanveer, M. 2019. Role of 24-epibrassinolide in inducing thermotolerance in plants. Journal of Plant Growth Regulators, 38:945–955. doi:10.1007/s00344-018-9904-x
33. Tsunekawa, K., T. Shijuku, M. Hayashimoto, Y. Kojima, K. Onai, M. Morishita, M. Ishiura, T. Kuroda, T. Nakamura, and H. Kobayashi, 2009. Identification and characterization of the Na+/H+ antiporter nhaS3 from the thylakoid membrane of Synechocystis sp. PCC 6803. Journal of Biological Chemistry, 284: 16513–16521. doi:10.1074/jbc.M109.001875
34. Vinay, S., and A. Afroz, 2015. Plant Tissue Culture. Springer, pp: 529. doi:10.1007/978-1-4939-8594-4_1
35. Wen, F. P., Z. H. Zhang, T. Bai, Q. Xu, and Y. H. Pan, 2010. Proteomics reveals the effects of gibberellic acid (GA3) on salt-stressed rice (Oryza sativa L.) shoots. Plant Science, 178:170–175. doi:10.1016/j.plantsci.2009.11.006
36. Zelm, E.V., Y. Zhang, and C. Testerink, 2020. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biology, 71: 403–433.
doi:10.1146/annurev-arplant-050718-10000


2.jpg)
