OPTIMIZING SOLAR OUTPUT TO REDUCE PHOTOVOLTAIC PANEL NUMBER IN IRRIGATION
DOI:
https://doi.org/10.36103/pengtv17Keywords:
Air passage outlet clearance, number of PV panels, PV operation cost, PV Type.Abstract
This experiment aimed to study the effect of integrating a passive cooling system with varying air passage outlet clearances: 0 cm (C0, control), 10 cm (C1), 15 cm (C2), and 20 cm (C3) on the performance of polycrystalline and monocrystalline PV panels used in solar-powered irrigation systems. Performance metrics included PV efficiency, maximum power, required number of panels, and operational costs. Results showed a highly significant effect (P < 0.0001) of air passage clearance and PV type on all measured parameters. Specifically, the 10 cm clearance (C1) yielded the best outcomes, achieving the highest PV efficiency (16.26%), maximum power (41.12 W), lowest panel number (7), and lowest operational cost ($8.75). Among panel types, polycrystalline panels demonstrated superior efficiency (12.52%), maximum power (32.05 W), required fewer panels (11), and incurred lower operational costs ($13.50) compared to monocrystalline panels. These findings indicate that optimizing passive cooling can significantly enhance PV performance while reducing system size and costs.
References
1.Adadu, Y. A., and A. F. Eyoma. 2024. Assessing the impact of solar-powered irrigation systems on water availability for crop production. IOSR Journal of Humanities and Social Science, 29(12), 01-10. https://doi.org/10.9790/0837-2912040110.
2.Ahmed, B. K., G. G. Younis, and Z. Abdalwahid. 2021. Estimation and analysis of solar radiation on horizontal and inclined surface for Baghdad City. Iraqi Journal of Science, 62(11), 4249-4259. https://doi.org/10.24996/ijs.2021.62.11(SI).5.
3.Akrouch, M. A., K. Chahine, J. Faraj, F. Hachem, C. Castelain, and M. Khaled. 2025. Advancements in cooling techniques for enhanced efficiency of solar photovoltaic panels: A detailed comprehensive review and innovative classification. Energy and Built Environment, 6(2), 248-276. https://doi.org/10.1016/j.enbenv.2023.11.002.
4.Ali, W. A. 2024. Solar energy in Iraq: potential and new technologies. Samarra Journal of Engineering Science and Research, 2(2), 43-53. Retrieved from https://journals.uosamarra.edu.iq/sjesr/article/view/23.
5.Al-Jumaily, K. J., M. F. Al-Zuhairi, and Z. S. Mahdi. 2012. Estimation of clear sky hourly global solar radiation in Iraq. International Journal of Energy and Environment, 3(5), 659-666. Retrieved from www.IJEE.IEEFoundation.org.
6.Al-Obaidi, M. A., and Y., K. AL-Timimi. 2022. Change detection in Mosul dam lake, North of Iraq using remote sensing and GIS techniques. Iraqi Journal of Agricultural Sciences, 53(1):38-47. https://doi.org/10.36103/ijas.v53i1.1506
7.Amelia, A. R., Y. M. Irwan, W. Z. Leow, M. Irwanto, I. Safwati, and M. Zhafarina. 2016. Investigation of the effect temperature on photovoltaic (PV) panel output performance. International Journal on Advanced Science Engineering Information Technology, 6(5), 682-688. https://doi.org/10.18517/ijaseit.6.5.938.
8.Appalasamy, K., R. Mamat, and S. Kumarasamy. 2025. Smart thermal management of photovoltaic systems: Innovative strategies. AIMS Energy, 13(2), 309-353. https://doi.org/10.3934/energy.2025013.
9.Armstrong, S., and W. G. Hurley. 2010. A thermal model for photovoltaic panels under varying atmospheric conditions. Applied Thermal Engineering, 30(11-12), 1488-1495. https://doi.org/10.1016/j.applthermaleng.2010.03.012.
10.Aslam, A., N. Ahmed, S. Qureshi, M. Assadi, and N. Ahmed. 2022. Advances in solar PV systems; a comprehensive review of PV performance, influencing factors, and mitigation techniques. Energies, 15(20), 1-52. https://doi.org/10.3390/en15207595.
11.Bahaidarah, H., A. Subhan, P. Gandhidasan, and S. Rehman. 2013. Performance evaluation of a PV module by back surface water cooling for hot climatic conditions. Energy, 59, 445-453. https://doi.org/10.1016/j.energy.2013.07.050.
12.Bošnjakovic, M., M. Stojkov, M. Katinic, and I. Lackovic. 2023. Effects of extreme weather conditions on PV systems. Sustainability, 15, 16044, 1-22. https://doi.org/10.3390/su152216044.
13.Boxwell, M. 2021. Solar electricity handbook 2021 edition: A simple, practical guide to solar energy: How to design and install photovoltaic solar electrical systems. Birmingham, United Kingdom: Greenstream. Retrieved from http://www.SolarElectricityHandbook.com.
14.Chaichan, M. T., H. A. Kazem, H. A. Al-Waeli, K. Sopian, M. A. Fayad, W. H. Alawee, and A. A. Al-Amiery. 2023. Sand and dust storms’ impact on the efficiency of the photovoltaic modules installed in Baghdad: A review study with an empirical investigation. Energies, 16(9), 25. https://doi.org/10.3390/en16093938.
15.Chandrasekar, M., S. Suresh, T. Senthilkumar, and M. Karthikeyana. 2013. Passive cooling of standalone flat PV module with cotton wick structures. Energy Conversion and Management, 71, 43-50. https://doi.org/10.1016/j.enconman.2013.03.012.
16.Dubey, S., J. N. Sarvaiya, and B. Seshadri. 2013. Temperature dependent photovoltaic efficiency and its effect on PV production in the world: A review. Energy Procedia, 33, 311-321. https://doi.org/10.1016/j.egypro.2013.05.072.
17.Eleiwi, M. A., T. A. Yassen, and A. E. Khalaf. 2024. Improving the overall performance of a hybrid photovoltaic system by reflectors and cooling with water jet. International Journal of Ambient Energy, 45(1). https://doi.org/10.1080/01430750.2024.2308757.
18.George, D., and P. Mallery. 2021. IBM SPSS Statistics 27 step by step: A simple guide and reference (17th ed.). New York: Routledge. https://doi.org/10.4324/9781003205333.
19. Hasan, D. J., and A. A. Farhan. 2020. The effect of staggered porous fins on the performance of photovoltaic panel in Baghdad. Journal of Engineering, 26(8), 1-13. https://doi.org/10.31026/j.eng.2020.08.01.
20.Hassanian, R., M. Riedel, A. Helgadottir, N. Yeganeh, and R. Unnthorsson. 2022. Implicit equation for photovoltaic module temperature and efficiency via heat transfer computational model. Thermo, 39-55. https://doi.org/10.3390/thermo2010004.
21.Hatwaambo, S., K. Ghinyama, M. Mwamburi, and B. Karlsson. 2007. Fill factor improvement in non-imaging reflective low concentrating photovoltaic. International Conference on Clean Electrical Power, 335-340. Capri, Italy: IEEE. https://doi.org/10.1109/ICCEP.2007.384233.
22.Huang, B. J., T. H. Lin, W. C. Hung, and F. S. Sun. 2001. Performance evaluation of solar photovoltaic/thermal systems. Solar Energy, 70(5), 443-448. https://doi.org/10.1016/S0038-092X(00)00153-5.
23.Jassim, A. Q., and L. A. Zeinaldeen. 2023. The effect of solar panel type on some irrigation system parameters and bean crop germination percentage. IOP Conference Series: Earth and Environmental Science, 1259, 7. https://doi.org/10.1088/1755-1315/1259/1/012123.
24.Kombate, Y., K. N’wuitcha, K. G. Apedanou, Y. Kolani, K. Donald Aoukou, and B. Obese. 2025. Analysis of cooling methods to improve the electrical performance of photovoltaic modules. Solar Energy and Sustainable Development, 14(1), 410-447. https://doi.org/10.51646/jsesd.v14i1.349.
25.Maka, A. O., and T. S. O’Donovan. 2022. Effect of thermal load on performance parameters of solar concentrating photovoltaic: High-efficiency solar cells. Energy and Built Environment, 3(2), 201-209. https://doi.org/10.1016/j.enbenv.2021.01.004.
26.Olabode, O. E., I. K. Okakwu, D. O. Akinyele, T. O. Ajewole, S. Oyelami, and O. V. Olisa. 2024. Effect of ambient temperature and solar irradiance on photovoltaic modules' performance. Iranica Journal of Energy and Environment, 15(4), 402-420. https://doi.org/10.5829/ijee.2024.15.04.08.
27.Olukan, T. A., and M. Emziane. 2014. A comparative analysis of PV module temperature models. Energy Procedia, 62, 694-703. https://doi.org/10.1016/j.egypro.2014.12.433.
28.Parthiban, R., and P. Ponnambalam. 2022. An enhancement of the solar panel efficiency: A comprehensive review. Frontiers in Energy Research, 10, 1-15. https://doi.org/10.3389/fenrg.2022.937155.
29.Pomares-Hernández, C., E. Zuluaga-García, G. Salas, C. Robles-Algarín, and J. Ortega. 2021. Computational modeling of passive and active cooling methods to improve PV panels efficiency. Applied Sciences, 11, 1-15. https://doi.org/10.3390/app112311370.
30.Rani, P. S., M. S. Giridha, and R. S. Prasad. 2018. Effect of temperature and irradiance on solar module performance. IOSR Journal of Electrical and Electronics Engineering, 13(2), 36-40.
https://doi.org/10.9790/1676-1302033640.
31. Reeve, J. D. 2022. Biostatistics: Data and models. Carbondale, IL, United States of America: Southern Illinois University Carbondale. Retrieved from https://www.oercommons.org/courseware/lesson/101759/student/.
32.Serbouh, Y., T. Benikhelef, D. Benazzouz, M. A. Ait Chikh, S. Touil, A. Richa, and H. Mahmoudi. 2022. Performance optimization and reliability of solar pumping system designed for smart agriculture irrigation. Desalination and Water Treatment, 55(2), 4-12. https://doi.org/10.5004/dwt.2022.28316.
33.Sharaf, M. Y., and A. S. Huzayyin. 2022. Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environmental Science and Pollution Research, 29, 26131-26159. https://doi.org/10.1007/s11356-022-18719-9.
34.Skoplaki, E., and J. A. Palyvos. 2009. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy, 83(5), 614-624. https://doi.org/10.1016/j.solener.2008.10.008.
35.Suriyachai, N., T. Kreetachat, P. Teeranon, P. Khongchamnan, and S. Imman. 2024. Dataset on the optimization of a photovoltaic solar water pumping system in terms of pumping performance in remote areas of Phayao province using response surface methodology. Data in Brief, 54, 9. https://doi.org/10.1016/j.dib.2024.110375.
36.Tiwaril, M. K., V. Mishra, R. Dev, and N. Singh. 2023. Effects of active cooling techniques to improve the overall efficiency of photovoltaic module: An updated review. E3S Web of Conferences, 387, 1-14. https://doi.org/10.1051/e3sconf/202338701012
37. Zeinaldeen, L. A. 2020. Estimating the performance of hybrid (monocrystalline PV- cooling) system using different factors. PhD Dissertation, Dept. of Plant, Soil, and Agricultural Systems, College of Agriculture, SIU, Carbondale, Illinois, United States of America. Retrieved from https://opensiuc.lib.siu.edu/dissertations/1862/


2.jpg)
