ANTIHYPERTENSIVE AND ANTIOXIDANT FUNCTION OF ENZYMATIC HYDROLYSATE FOR BARLEY PROLAMINE

Authors

  • F. A. Abadi
  • J. M. Nase

DOI:

https://doi.org/10.36103/jwq1c309

Keywords:

protein, amino acids, degree of hydrolysis, ACE1, antioxidant

Abstract

This study was aimed to identify the role of barley prolamin (BP) hydrolysates which prepared from local barley (class Ibaa 99), prolamins isolate using pepsin and trypsin (individually - synergistically) in inhibiting the ACE 1 and as antioxidant agent. The Amino acids (AAs) content of barley protein were estimated by HPLC technique, and barley prolamin (BP) was isolated from whole barley flour (WBF) using 70% ethyl alcohol, and then purified depending IP and centrifugation. Prolamin molecular weight (M.wt) was determined using the electrophoresis technique. Barley prolamin isolate (BPI) subjected to enzymatic hydrolysis using 20U of pepsin and trypsin separately and synergistically for 8 h. Aliquot of the BPI hydrolysate was taken every 60 min to determine the degree of hydrolysis (DH%), antioxidant and antihypertensive properties.  The results showed that barley protein contained 22 amino acids, and the percentage of the essential amino acids (EAA) and polar amino acids (AAs) were 35.08, 45.86 % of the barley protein composition, respectively. Prolamin constituted 24% of the total barley proteins and the BPI contained 90.5% protein. Electrophoresis pattern showed that most of the prolamin bands have M.wt about 34-55 KD. Synergistic hydrolysis of BPI gave the highest values for DH (50.68 %) after 8 h hydrolysis. The antioxidant function included the radical scavenging activity (RSA) and reducing power (RP) of hydrolysates was directly proportional to the DH%. The highest RSA value was 45% in the pepsin hydrolysates sample, and the highest absorbency for RP assay was 0.69 by synergistic hydrolysates sample after 8h. Bitter taste appeared in hydrolysates prepared by Pepsin and synergistic hydrolysis after 7h. The ACE 1 inhibition activity was proportional to the DH%, and the maximum activity reach to 81.44% after 8 h in pepsin hydrolyzed samples.  

References

1. A.O.A.C. 1995. Official methods of analysis.16th ed. Washington, DC: Association of Official Analytical Chemists. DOI: 10.12691/ajfn-3-6-1.

2. Abadi, F. A.and J. M. Naser. 2019. Effect of wet gluten addition on stalin characteristics of barley bread. The Iraqi Journal of Agricultural Science, 50(1): 390-397. https://doi.org/10.36103/ijas.v50i1.305.

3. Al-Shammary, O. A. and S .K. Dosh. 2020. Isolation and purification of αs2-CN local goat milk and studying its hydrolysates inhibition efficacy towards ace1. Plant Archives, 20(1): 1917-1925. https://doi.org/10.22034/chemm.2023.366342.1618.

4. Alu’datt, M. H., K. Ereifej, A.AbuZaiton, A. Alrababah, M.Almajwal , A. Rababah, and W. Yang . 2012 .Anti-oxidant, anti-diabetic, and anti-hypertensive effects of extracted phenolics and hydrolyzed peptides from barley protein fractions. International Journal of Food Properties, 15(4):781-795. https://doi.org/10.1080/10942912.2010.503357.

5. Alu’datt, M. H., T. Rababah, K.Ereifej, I. Alli, M. A. Alrababah, A. Almajwal, and M.N.Alhamad. 2012. Effects of barley flour and barley protein isolate on chemical, functional, nutritional and biological properties of Pita bread. Food Hydrocolloids, 26(1): 135-143. http://dx.doi.org/10.1016%2Fj.foodhyd.2011.04.018.

6. Ciccocioppo, R., D. A. Sabatino, and G.R.Corazza. 2005 .The immune recognition of gluten in coeliac disease. Clinical & Experimental Immunology, 140(3): 408-416. https://doi.org/10.1111%2Fj.1365-2249.2005.02783.x.

7. Consultation, F. E. 2011. Dietary protein quality evaluation in human nutrition. FAO Food Nutr. Pap, 29: 1-66. https://doi.org/10.1111/nbu.1206.

8. Garrett, D. A., L. M. Failla, and J. R. Sarama. 1999. Development of an in vitro hydrolysis method to assess carotenoid bioavailability from meals. Journal of Agricultural and food chemistry, 47(10):4301-4309. https://doi.org/10.1021/jf9903298.

9. Houde, M. N., Khodaei .N, Benkerroum and .S. Karboune. 2018. Barley protein concentrates: Extraction, structural and functional properties. Food Chem; 254:367-376. https://doi.org/10.1016/j.foodchem.2018.01.156.

10. Islam, M., Y. Huang, , S. Islam, , B. Fan, L. Tong, , and F. Wang, 2022. Influence of the degree of hydrolysis on functional properties and antioxidant activity of enzymatic soybean protein hydrolysates. Molecules, 27(18), 6110.

11. Kozlowski, L. P. 2016. IPC–isoelectric point calculator. Biology Directs 11(1):1-16. https://doi.org/10.1186/s13062-016-0159-9.

12. Jajić, I. S. Krstović., D. Glamočić, S. Jakšić, and B. Abramović. 2013. Validation of an HPLC method for the determination of amino acids in feed. Journal of the Serbian Chemical Society, 78(6): 839-850. http://dx.doi.org/10.2298/JSC120712144J

13. Li, X., J. Deng, ,S. Shen, T. Li, M Yuan., R Yang., and C. Ding. 2015. Antioxidant activities and functional properties of enzymatic protein hydrolysates from defatted Camellia oleifera seed cake. Journal of Food Science and Technology, 52: 5681-5690.https://doi.org/10.1007/s13197-014-1693-z.

14. Liu, B. L and S. P. Chiang. 2008. Production of hydrolysate with antioxidative activity and functional properties by enzymatic hydrolysis of defatted sesame (Sesamum indicum L.). International Journal of Applied Science and Engineering, 6(2): 73-83.

15. Liu, X., D.Jiang, and D. G. Peterson. 2014. Identification of bitter peptides in whey protein hydrolysate. Journal of agricultural and food chemistry, 62(25):5719 - 5725. https://doi.org/10.1021/jf4019728

16. Lo, W. M., and E. C. Li-Chan. 2005. Angiotensin I converting enzyme inhibitory peptides from in vitro pepsin− pancreatin hydrolysis of soy protein. Journal of Agricultural and Food Chemistry, 53(9): 3369-3376. https://doi.org/10.1021/jf048174d

17. Megías, C., M. D. Yust, J. Pedroche, H. Lquari, J. Girón-Calle, M. Alaiz, & J.Vioque. 2004. Purification of an ACE 1 inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. Journal of Agricultural and Food Chemistry, 52(7): 1928-1932. https://doi.org/10.1021/jf034707r.

18. Mickowska, B., P. Socha, D Urminská, and E.Cieślik. 2012. The comparison of prolamins extracted from different varieties of wheat, barley, rye and triticale species: amino acid composition, electrophoresis and immune detection. Journal of Microbiology, Biotechnology & Food Sciences, 2021: 742-752.

19. Perera, H. D. S. M., J. Samarasekera, S. M. Handunnetti, and O. V. D. S. J. Weerasena. 2016. In vitro anti-inflammatory and antioxidant activities of Sri Lankan medicinal plants. Industrial Crops and Products, 94: 610-620. https://doi.org/10.1016/j.indcrop.2016.09.009.

20. Pinciroli, M., P. Aphalo, A. Nardo, M. C. Añón, and A.V.Quiroga . 2019. Broken rice as a potential functional ingredient with inhibitory activity of renin and angiotensin converting enzyme (ACE 1). Plant Foods for Human Nutrition, 74: 405-413. https://doi.org/10.1007/s11130-019-00754-6.

21. Schägger, H. 2006. Tricine–sds page. Nature protocols, 1(1): 16-22. https://doi.org/10.1038/nprot.2006.4.

22. Sharma, P., H. S.Gujral. 2011.Effect of sand roasting and microwave cooking on antioxidant activity of barley. Food Research International, 44(1): 235-240. https://doi.org/10.1016/j.foodres.2010.10.030.

23. Shevkani, K., N. Singh.,Y. Chen., A. Kaur, and L. Yu .2019. Pulse proteins: Secondary structure, functionality and applications. Journal of Food Science and Technology, 56: 2787-2798.

https://doi.org/10.1007/s13197-019-03723-8

24. Sullivan, P., E. Arendt, and E. Gallagher. 2013. The increasing uses of barley and barley by-products in the production of healthier baked goods. Trends in Food Science & Technology, 29(2): 124-134. https://doi.org/10.1016/j.tifs.2012.10.005.

25. Vaccino, P., H. A. Becker, A. Brandolini, F. Salamini and B, Kilian. 2009. A catalogue of Triticum monococcum genes encoding toxic and immunogenic peptides for celiac disease patients. Molecular Genetics and Genomics, 281: 289-300. https://doi.org/10.1007/s00438-008-0412-8.

26. Wafaa, N., H. A. Elbarbary, E. M. A. Ibrahim, H. A. Mohamed, and H .Jenssen. 2022. Effect of enzyme type and hydrolysis time on antibacterial and antioxidant activity of whey protein hydrolysates. Iraqi Journal of Agricultural Sciences, 53(6): 1340-1357.

https :// doi. Org /10.36103 / ijas. V5 3i6 .1650.

27. Wang, W., and E. G. De Mejia. 2005. A new frontier in soy bioactive peptides that may prevent age related chronic diseases. Comprehensive Reviews in Food Science and Food Safety, 4(4): 63-78. https://doi.org/10.1111/j.1541-4337.2005.tb00075.x.

28. Xie, X., C. Zhu, D. Wu, and M. Du. 2022.Autoregressive Modeling and Prediction of the Activity of Antihypertensive Peptides. Frontiers in Genetics, 12, 801728. https://doi.org/10.3389/fgene.2021.801728.

29. Yalçın, E., S. Çelik, and E. İbanoğlu. 2008. Foaming properties of barley protein isolates and hydrolysates. European Food Research and Technology, 226: 967-974. http://dx.doi.org/10.1007/s00217-007-0618-8

30. Zeece, M. 2020. Introduction to the Chemistry of Food. Academic Press, (PP.226-231). https://doi.org/10.1016/C2015-0-04257-5.

31. Zhao, H., W. Fan, J. Dong, J. Lu, J. Chen, L. Shan, and W. Kong.2008. Evaluation of antioxidant activities and total phenolic contants of typical malting barley varieities. Food Chemistry, 107(1): 296-304. https://doi.org/10.1016/j.foodchem.2007.08.018.

Downloads

Published

2025-12-31

Issue

Section

Articles

How to Cite

Abadi, F. A., & Nase, J. M. (2025). ANTIHYPERTENSIVE AND ANTIOXIDANT FUNCTION OF ENZYMATIC HYDROLYSATE FOR BARLEY PROLAMINE. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(6), 2190-2200. https://doi.org/10.36103/jwq1c309