STUDY THE EFFECT OF LYCOPENE EXTRACT AND NANO-LYCOPENE EXTRACTED FROM TOMATO WASTE IN INHIBITING MICROBIAL GROWTH AND AS AN INTIOXIDANT

Authors

  • Abd Al-Hussain Attia Ali Rasheed
  • Iman Hameed Al-Anbari

DOI:

https://doi.org/10.36103/3dk1wg47

Keywords:

HPLC, XRD, carotenoid, chemical additives, free radicals, pigment, retention time.

Abstract

This study was aimed to investigate effectiveness of lycopene and nano-lycopene extracted from tomato waste powder in inhibiting the growth of microorganisms was studied. The study included preparing lycopene extract using a triple solvent mixture (hexane, acetone, and ethanol) in ratios (2:1:1) after evaporating them from the extractor and using it to prepare nano-lycopene by the technique of High-energy mechanical grinding. The surface morphology and roughness of the lycopene nanoparticles was determined, and their dimensions were determined using an atomic force microscope (AFM).The effectiveness of both lycopene and nano-lycopene extract was tested to inhibit gram-positive and negative bacteria, fungi, and yeast using the suitable diffusion method at concentrations of (50, 100, 150, 200, and 250) micrograms/ml. Its antioxidant activity was studied using the DPPH method and compared to lycopene extract and industrial antioxidant.

References

1. .Imran, M., F. Ghorat, I., Ul-Haq, H., Ur-Rehman, F., Aslam, M., Heydari, M. A., Shariati, E., kuskhanova, Z., Yessimbekov, M.Thiruvengadam, and M. H. Hashempur, .2020. Lycopene as a natural antioxidant used to prevent human health disorders Antioxidants, 9(8): 706-710.

doi: 10.3390/antiox9080706

2. Al-Anbari, I. H., S. R., Khairi, and L. K. Hassan,.2021. Study the physicochemical, microbiological and sensory characteristics of soft cheese incorporated with Lupine (Lupinus albus L.) powder in different proportion. In IOP Conference Series: Earth and Environmental Science 761(1):21-24 doi 10.1088/1755-1315/761/1/012124.

3. Al-Anbari, I. H., A. M. Dakhel, and A. Adnan, .2019. The effect of adding local orange peel powder to microbial inhibition and oxidative reaction within edible film component. Plant Arch, 19 (1): 1006-1012.‏ doi.org/10.1111/j.1365-2672.2006.03124

4. Alboresi, A., L., Dall'Osto, A., Aprile, P., Carillo, E., Roncaglia, L., Cattivelli, and R. Bassi, 2011. Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein. BMC Plant Biology, 11(2):1-22 doi.org/10.1186/1471-2229-11-62

5. Alshahrani, M. Y., E. H., Ibrahim, M., Asiri, M., Kilany, A. G., Alkhathami, M. N., Alshahrani and H. C. Chandramoorthy, .2022. Lycopene augments and enhances anti-oxidant/antibacterial efficiency of ethanolic leaf extract of (Helianthu annuus) over multidrug-resistant bacterial isolates. Journal of King Saud University Science, 34(7):102-250 doi.org/10.1016/j.jksus.2022.102250

6. Al-Shebli, W. C. H. and I. H., Al-Anbari, 2023. Studying the antioxidant activity of moringa leaf extracts (Moringa oleifera Lam.). In IOP Conference Series: Earth and Environmental Science,1262(6):2-9 doi 10.1088/1755-1315/1262/6/062009.

7. Al-Taweel, S. K., I. H. Al-Anbari, and M. Al-Hamdani,. 2022. ntioxidant identification, antimicrobial activity of stevia rebaudiana bertoni leaves extracton flavored milk. International Journal of Agricultural and Statistical Sciences , 18(2):547-556 doi.org/10.5336/pharmsci.2020-79419

8. Altemimi, A., N. Lakhssassi, A. Baharlouei, D. G. Watson, and D. A. Lightfoot, 2017. Phytochemicals: Extraction, isolation, and identification. Plants, 6(4), 42.

9. Binsuwaidan, R., A. A., Sultan, W. A., Negm, N. G., Attallah, M. J., Alqahtani, I. A., Hussein, M. A., Shaldam, S. A. El-Sherbeni, and E., Elekhnawy,. 2022. Bilosomes as nanoplatform for oral delivery and modulated in vivo antimicrobial activity of lycopene. Pharmaceuticals ,15(9):1042-1043. doi.org/10.3390/ph15091043

10. Black, H.S., F., Boehm, R. Edge, and T. G., Truscott,. 2020. The benefits and risks of certain dietary carotenoids that exhibit both anti-and pro-oxidative mechanisms—A comprehensive review. Antioxidants, 9(3): 263-264.

11. Brand-Williams, W., M. E. Cuvelier, and C. L. W. T., Berset,. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1):25-30 https://doi.org/10.1016/S0023-6438(95)80008-5

12. Choi, H. and D. G. Lee,. 2015. Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrialdysfunction. Biochimie 11(5): 108-115. doi.org/10.1016/j.biochi.2015.05.009

13. Cousins B. G.; H. E. Allison; P .J. Doherty;C. Edwards; M. J. Garvey; D. S. Martin and R. L. Williams. 2007. Effects of a nanoparticulate silica substrate on cell attachment of Candida albicans. Journal of Applied Microbiology.102(3):757-765

14. Deraz, S. F. 2018. Antimicrobial and preservative effects of natural compounds on meat quality. Journal of Food Protection, 81(7), 1073–1081.

doi 10.3390/antiox9030264

15. El-Desoky, N. I., N. M. Hashem, and S. A. Abdelnour, 2021. Influence of vitamin E and selenium supplementation on growth performance and antioxidant status of lambs. Animals, 11(3), 664

16. Hassan, F., M. Imran, and S. Mahmood, 2020. Camel milk cheese: processing, quality and safety aspects. Journal of Food Science and Technology, 57, 2911–2920.

17. Hussein, J. L., A. A. Ahmed and D. J. Raheem,. 2023. Study of antibacterial, antioxidant activity and biochemical parameters of different honey samples. Iraqi Journal of Science, 64 (5): 2189-2201.

doi: 10.24996/ijs.2023.64.5.8.

18. Jasim, Q. A., and T. S. AI-Obaidi,. 2022. Substitution of animal protein by different ation of dried rumen meal in common carp Cyprinus carpio DIETS. Iraqi Journal of Market Research and Consumer Protection, 14(1):65-74.‏ doi.org/10.28936/jmracpc14.1

19. Khalid, N. T., R. K. Shaymaa, and H., Luma Khairy,. 2021. Effect of incorporated soft cheese with wheat germ extracts quality and on shelf life. Indian J. Ecol, 48(13):244- 248. doi:10.21608/ejfs.2023.203837.1162.

20. Khan, I., Saeed, K., and I. Khan, 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931.

21. Mahmed, A.. M., and B. H. Mohammed,. 2020. Chemical determination of heart of palm type kedraaweey, )Phoenix dactylifera L( identification of active compounds in its water extract and application in the manufacture of ice cream. Biochemical and Cellular Archives,20(1):20-21 doi: 10.35124/bca.2020.20.1.2021‏

22. Mozos, I., D. Stoian, C. T. Luca, and M. G. Barbu, 2020. Lycopene and oxidative stress: An updated review. Antioxidants, 9(3), 236.

23. Nahla, T. K., S. U., Wisam, and N. M. Tariq, 2018. Antioxidant activities of Beetroot (Beta vulgaris L.) extracts. Pakistan Journal of Nutrition, 17(10):500-505. doi:10.3923/pjn.2018.500.505.

24. Qing, Y., et al. 2018. Potential antibacterial mechanism of silver nanoparticles and synergy with antibiotics. International Journal of Nanomedicine, 13, 3311–3324.

25. Rasheed, A. A. H. A. A. and I. H., Al-Anbari,. 2023. Study of the antioxidant activity of lycopene and lycopene nanoparticles extracted from tomato waste powder. In IOP Conference Series: Earth and Environmental Science, 1262 (6):2-3 doi10.1088/17551315/1262/6/062003.

26. Rawat, S., A. Siddiqui, and R., Singh,. 2023. Effect of different processing and preservation techniques on lycopene: A mini review. Research Journal of Pharmacy and Technology, 16(5):2537-2542. doi.org/10.52711/09740x.2023.0041.

27. Tarko, T., A. Duda-Chodak, and D. Semik-Szczurak, 2022. Antioxidant potential of selected plant extracts in food applications. Antioxidants, 11(2), 345.

28. Thompson, K. A., M. R., Marshall, C. A., Sims, C. I., Wei, S. A., Sargent, and J. W. Scott, 2000. Cultivar, maturity and heat treatment on lycopene content in tomatoes. Journal of Food Science, 65(5):791-795. https://doi.org/10.1111/j.1365-2621.2000.tb13588.x

Downloads

Published

2025-12-31

Issue

Section

Articles

How to Cite

Rasheed , A. A.-H. A. A., & Al-Anbari, I. H. (2025). STUDY THE EFFECT OF LYCOPENE EXTRACT AND NANO-LYCOPENE EXTRACTED FROM TOMATO WASTE IN INHIBITING MICROBIAL GROWTH AND AS AN INTIOXIDANT . IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(6), 2180-2189. https://doi.org/10.36103/3dk1wg47