EVALUATION OF INHIBITORY ACTIVITY CHITOSAN NANOPARTICLES LOADED ON BASIL OIL AGAINST PSEUDOMONAS AERUGINOSA BIOFILM FORMATION

Authors

  • Ahmed Abdul Kadhim Obeid
  • Emad Hamdi Jassim

DOI:

https://doi.org/10.36103/va983922

Keywords:

antibacterial , GC-MS , pathogenic bacteria, ‏MDR.

Abstract

The increasing resistance of Pseudomonas aeruginosa to antibiotics has complicated the treatment of infections due to its various virulence factors. One of its major pathogenic traits is the ability to form thick biofilms, which allow the bacteria to adhere to living or nonliving surfaces and enhance drug resistance. Consequently, exploring safe and effective therapeutic alternatives from plant sources has become essential for combating this multidrug-resistant pathogen. In this study, essential oil of Ocimum basilicum (BEO) was extracted via distillation and analyzed by GC-MS. The BEO was then loaded onto chitosan nanoparticles (BEOCSNPs) prepared using the ionic gelation method with tripolyphosphate (TPP). The nanoparticles were characterized using UV–vis, FTIR, SEM, and XRD techniques. Clinical isolates of Pseudomonas aeruginosa were obtained and identified with the VITEK-2 system. The minimum inhibitory concentrations (MICs) of BEO and BEOCSNPs were determined using a 96-well resazurin-based microdilution assay. The MIC of BEO ranged from 190 to 95 µg/mL, whereas the MIC of BEOCSNPs was significantly lower, ranging from 3.75 to 0.93 µg/mL. The inhibitory effects at sub-MIC concentrations were assessed by measuring optical density in a 96-well microplate using 0.1% crystal violet staining, which showed a significant decrease in biofilm formation. The biofilm inhibition activity of BEOCSNPs was notably higher in isolates P16 and P22, with inhibition percentages of 84.28% and 79.32%, respectively. In comparison, BEO alone inhibited P16 and P22 at 66.74% and 57.43%, respectively. These results indicate that Ocimum basilicum essential oil loaded onto chitosan nanoparticles exhibits superior inhibitory activity against biofilm formation of Pseudomonas aeruginosa compared to the essential oil alone.

References

1. Allahverdiyev, A. M.; V. Kon, K..; Abamor, E. S.; M. Bagirova, ‎and M. ‎Rafailovich. Coping with antibiotic resistance: ‎combining ‎nanoparticles with antibiotics and other antimicrobial agents. ‎Expert review ‎of anti-infective therapy. (2011). 9(11): 1035-1052. ‎‏ https://doi.org/10.1586/eri.11.121

2. Almatroudi, A. 2024. Investigating Biofilms: Advanced Methods for Comprehending Microbial Behavior and Antibiotic Resistance. Frontiers in Bioscience, 29(4), 133. https://doi.org/10.31083/j.fbl2904133

3. Amelia, B.; E. Saepudin,; A. H. Cahyana.; D.U.Rahayu.; A. S.‎ Sulistyoningrum,. and J. Haib,2017 GC-MS ‎analysis of clove (Syzygium aromaticum) bud essential oil ‎from Java and Manado. AIP Conference Proceedings, ‎‎1862: 030082-1–82-9. https://doi.org/10.1063/1.4991186

4. Aydin, R. and M. Pulat,2012. 5-Fluorouracil encapsulated ‎chitosan ‎nanoparticles for pH-stimulated drug delivery: evaluation of ‎controlled ‎release kinetics. J. Nanomater. . 42:56-58. https://doi.org/10.1155/2012/313961

5. Ayesha, J., and A. Despeina, 2024. Antibiotic susceptibility testing using minimum inhibitory concentration (MIC) assays. Nature Reviews Microbiology, 22(4), 215–228. https://doi.org/10.1038/s44259-024-00051-6

6. Chandra Dey, S.; Al-Amin, M.; Ur Rashid, T.; Zakir Sultan, ‎M.; ‎Ashaduzzaman, M.; Sarker and et al. 2016. Preparation, characterization, and performance evaluation of chitosan as an adsorbent for remazol red. ‎International Journal of Latest Research in Engineering ‎and ‎Technology,2(2): 52–62.‎

7. Chen, C. Z. and S. L. Cooper. 2002. Interactions between dendrimer ‎biocides and ‎bacterial membranes. Biomaterials 23(16), 3359–3368. https://doi.org/10.1016/S0142-9612(02)00036-4

8. Chenthamara, D.; S. Subramaniam, S. G. Ramakrishnan,; S.‎Krishnaswamy; M. Essa; F.H. Lin, and et al.2019. Therapeutic ‎efficacy of ‎nanoparticles and routes of administration. Biomaterials ‎Research, 23(1):1–‎‎29‎. DOI:10.1186/s40824-019-0166-x

9.Elshikh, M.; S. Ahmed,; S. Funston; P. Dunlop,; M. McGaw; ‎R. ‎Marchant, et al. 2018. Resazurin-based 96-well plate microdilution ‎method for ‎the determination of the minimum inhibitory concentration of ‎biosurfactants. ‎Biotechnology Letters, 38(6):1015–1019.‎ https://doi.org/10.1007/s10529-016-2079-2

10. Emad M, Bader Y, Ralciane de. Back to nature: Medicinal plants as promising sources for antibacterial drugs in the post-antibiotic era. Plants. 2023;12(17):3077. https://doi.org/10.3390/plants12173077

11. Gowda, M., and S. Ramachandra, 2024. A validated comparative study of RP-HPLC, GCFID, and UV spectrophotometric methods for the quantification of eugenol isolated from Syzygium Aromaticum L. Journal of Pharmacognosy and Phytochemistry 2024; 13(5): 544-550

DOI: 10.22271/phyto 2024.v13.i5h.15123

12. Haney, E. F.; M. J. Trimble, and R. E. Hancock. 2021. W‎Microtiter ‎plate assays to assess antibiofilm activity against bacteria. Nature ‎Protocols, 16(5):2615–2632.‎ DOI:10.1038/s41596-021-00515-3. https://doi.org/10.1038/s41596-021-00515-3

13. Helander I M, E. L Nurmiaho-Lassila, R. Ahvenainen, J. Rhoades,‎ S. Roller. 2001. Chitosan disrupts the barrier properties of the outer membrane of ‎Gram-negative bacteria. International Journal of Food Microbiology.71:235244.‎ https://doi.org/10.1016/S0168-1605(01)00609-2

14. Hemmati, J., and M. Nazari, 2024. In vitro investigation of relationship between quorum-sensing system genes, biofilm forming ability, and drug resistance in clinical isolates of Pseudomonas aeruginosa. BMC Microbiology, 24, Article 99. https://doi.org/10.1186/s12866-024-03249-w

15. Jahed, E., M. A. Khaledabad, M. R. Bari, and M, H. Almasi. 2017. ‎Effect ‎of cellulose and lignocellulose nanofibers on the properties of ‎Origanum ‎vulgare ssp. gracile essential oil-loaded chitosan films. React. ‎Funct. Polym. 117,70–80. https://doi.org/10.1016/j.reactfunctpolym.2017.06.008

16. Javed, R.; M. Zia, ;S. Naz, ; S.O. Aisida, and Q. Ao, 2020. Role ‎of ‎capping agents in the application of nanoparticles in biomedicine ‎and ‎environmental remediation: recent trends and prospects. Journal ‎of Nanobiotechnology, 18(1): 1–15. https://doi.org/10.1186/s12951-020-00704-4

17. Jawad, A. Mohammed, K. Asmahan Allawi1, Hind Mufeed Ewadh.2018 Essential oils of rosemary as antimicrobial agent against three types of bacteria. Med J Babylon ;15:53-6. DOI:10.4103/MJBL.MJBL_14_18

18. Jha A. K, K. Prasad, and A. Kulkarni. 2009. Plant system: nature’s‎ manufactory. Coll Sur B: Biointerfaces.73: 219-223. DOI:10.1016/j.colsurfb.2009.05.018

19. kadhum, W. N. and I. A. Al-Ogadi, 2022 Evaluation of chitosan-alginate nanoparticle as A stable antibacterial formula in biological fluids.iraqi Journal of Science,Vol. 63, No. 6, pp:23982418. https://doi.org/10.24996/ijs.2022.63.6.8

20. Khan, I.; K. Saeed, and I. Khan, 2015. Nanoparticles: ‎Properties, ‎applications, and toxicities. Arabian Journal of Chemistry, ‎‎12(7): 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

21. Kim, J. A., Y. J. Cho, and H. S. Lim, 2022. Assessment of the biofilm-forming ability on solid surfaces of periprosthetic infection-associated pathogens. Scientific Reports, 12, Article 22929. https://doi.org/10.1038/s41598-022-22929-z

22. Kowalska-Krochmal, B. and R. Dudek-Wicher. ‎2021. The ‎minimum inhibitory concentration of antibiotics: methods, ‎interpretation, ‎clinical relevance. Pathogens, 10(2):165. https://doi.org/10.3390/pathogens10020165

23. Mahmood, H., Nasir, G., and Q. Ibraheem, 2020. Relationship between pigment production and biofilm formation from local Pseudomonas aeruginosa isolates. Iraqi Journal of Agricultural Science, 51(5), 1413-1419. https://doi.org/10.36103/ijas.v51i5.1151

24. Menakera, M. Kravetsb, M. Koela, and A. Orava, 2004. Identification ‎

and ‎characterization of supercritical fluid extracts from herbs, C. R. Chimie‎‎7‎‎629–633. DOI:10.1016/j.crci.2004.03.005

25. Muller, R. H., C. Jacobs, and O. Kayser, 2001. Nanosuspensions as particulate drug formulations: rationale for development and what we can expect for the future. Adv. Drug Deliv. ‎Rev. 47, 3–19. https://doi.org/10.1016/S0169-409X(00)00118-6

26. Mustafa H. N. I. Al –Ogaid. 2023. Efficacy of zinc sulfide–chitosan nanoparticles against bacterial diabetic wound infection. Iraqi Journal of Agricultural Sciences ,54(1):1- 17 https://doi.org/10.36103/ijas.v54i1.1671

27. Nasti, A.; N. M. Zaki, ; P. De Leonardis.; S. Ungphaiboon,‎; P. ‎Sansongsak,; M. J. Rimoli, et al. 2009. Chitosan/TPP ‎and ‎chitosan/TPP-hyaluronic acid nanoparticles: Systematic optimization of ‎the ‎preparative process and preliminary biological evaluation.

‎Pharmaceutical ‎Research, 26(8):1918–1930.‎ https://doi.org/10.1007/s11095-009-9908-0

28. Nirwati, H., K. Sinanjung, , F. Fahrunissa, F. Wijaya, S. Napitupulu, V. P. Hati, T. Nuryastuti, 2019. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proceedings, 13(11), 1–8. https://doi.org/10.1186/s12919-019-0176-7

29. Olajire, A. A. and A. A. Mohammed. 2020. Green synthesis of bimetallic Pd core Au shell nanoparticles for enhanced solid-phase photodegradation of low-density polyethylene film. J. Mol. Struct.1206, 127724. https://doi.org/10.1016/j.molstruc.2020.127724

30. Raafat D., K.von Bargen, A.Haas., and H. Sahl. 2008. Insight into the ‎mode ‎of action of Chitosan as an Antibacterial Compound. Applied ‎and ‎Environmental Microbiology. 74: 3764-3773.Research; 7(5); ‎‎251-‎‎257. https://doi.org/10.1128/AEM.00453-08

31. SAS. 2018. Statistical Analysis System, User's Guide. Statistical. ‎Version 9.6th ed. SAS. Inst. Inc. Cary. N.C. The US

Downloads

Published

2025-12-31

Issue

Section

Articles

How to Cite

Obeid, A. A. K., & Jassim, E. H. (2025). EVALUATION OF INHIBITORY ACTIVITY CHITOSAN NANOPARTICLES LOADED ON BASIL OIL AGAINST PSEUDOMONAS AERUGINOSA BIOFILM FORMATION. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(6), 2143-2158. https://doi.org/10.36103/va983922