DEGRADATION OF DYES CONTAMINATED AN AQUEOUS SOLUTION USING LACCASE SUPPORTED ON LOCAL PORCELAINTE
DOI:
https://doi.org/10.36103/j650zq39Keywords:
support materials, enzyme immobilization, laccase, porcelanite.Abstract
This research explores an efficient decolorization approach of aqueous solution containing Reactive Navy Blue (RNB), Reactive Red (RR), Reactive Turquoise Blue (RTB), and Reactive Black (RB) dyes by employing laccase immobilized on granular Porcelanite (PC). The process of immobilizing the laccase enzyme from Fenugreek seeds onto Porcelanite was achieved through a covalent method and the immobilization ratio was reached to 98%. PC function groups and surface texture was examined using Scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) techniques. The impact of several process parameters, including pH, particle amount, dye concentration, and temperature, were investigated. The treatment successfully led to maximum decolorization rates of 95.50% for RB, 90.19% for RNB, 85.63% for RTB, and 80.82% for RR after only 24 hours, in which the best conditions were (5, 1.5 g, 50 mg/l,25 ◦C, respectively (. Interestingly, the coefficient of determination (R2) for RB, RNB, RTB, and RR dyes was 87%, 82%, 87%, and 72%, respectively, indicating high model predictivity of the behavior of dyes post-decolorization, indicating enhanced wastewater remediation via laccase immobilization.
References
1. Abadulla E, T. Tzanov, S. Costa, KH. Robra, A. Cavaco-Paulo, and G M. Gübitz. 2000. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Applied and Environmental Microbiology. Aug;66(8):3357-62.
doi: 10.1128/AEM.66.8.3357-3362.2000
2. Ali A, 2019. Treatment of wastewater contaminated with dyes using modified low-cost adsorbents. Desalination and Water Treatment, 140, pp.326-336, https://doi.org/10.5004/ dwt.23513
3. An N, C. Zhou, X. Zhuang, D. Tong, and W. Yu, 2015. Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Applied Clay Science. Elsevier Ltd.https://doi.org/10.1016/j.clay.2015.05.029
4.Atieh M, 2014. Removal of Phenol from Water Different Types of Carbon – A Comparative Analysis. APCBEE Pro-cedia, 10,136–141. https://doi.org/10.1016/j.apcbee.2014.10.031.
5. Aziz G, S. Hussein, M. M-Ridha, S. Mohammed, K. Abedd, M. Muhamad, and H Hasan, 2023. Activity of laccase enzyme extracted from Malva parviflora and its potential for degradation of reactive dyes in aqueous solution. Biocatalysis and Agricultural Biotechnology 50. https://doi.org/10.1016/j.bcab.2023.102671.
6. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Analytical Biochemistry Journal. 72: 248-254.
7.Brányik, T, A. Vicente, R. Oliveira, and J. Teixeira, 2004. Physicochemical surface properties of brewing yeast influencing their immobilization onto spent grains in a continuous reactor. Biotechnology and Bioengineering. 5;88(1):84-93.
doi: 10.1002/bit.20217. PMID: 15389484
8.Brüschweiler BJ,and C. Merlot,2017. Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet. Regulatory Toxicology and Pharmacology.;88:214-226.
doi: 10.1016/j.yrtph.2017.06.012
9.Dai Y, J. Yao, Y. Song, X. Liu, S. Wang, and Y. Yuan, 2016. Enhanced performance of immobilized laccase in electrospun fibrous membranes by carbon nanotubes modification and its application for bisphenol A removal from waterJournal of Hazardous Materials. 2016 Nov 5;317:485-493.
doi: 10.1016/j.jhazmat
10. Dil E, M Ghaedi, A. Ghaedi, A. Asfaram, A. Goudarzi, S. Hajati, and V. Gupta, 2016. Modeling of quaternary dyes adsorption onto ZnO-NR-AC artificial neural network: Analysis by derivative spectrophotometry. Journal of Industrial and Engineering Chemistry, 34, 186–197. https://doi.org/10.1016/j.jiec.2015.11.010.
doi: 10.1016/j.biortech.2017.03.093.
11.Dong, Z.; Z Liu,.; J.Shi,; Tang,; H.Xiang, X.; F.Huang,; M.-M.Zheng. 2019. Carbon Nanoparticle-Stabilized Pickering Emulsion as a Sustainable and High-Performance Interfacial Catalysis Platform for Enzymatic Esterification / Trans-esterification. ACS Sustainable Chemistry & Engineering., 7, 7619–7629. DOI:10.1021/acssuschemeng.8b05908
12.Farias S, DA. Mayer, D de Oliveira, de Souza SMAGU,and AAU. de Souza.2017. Free and Ca-Alginate Beads Immobilized Horseradish Peroxidase for the Removal of Reactive Dyes: an Experimental and Modeling Study. Applied Biochemistry and Biotechnology. Aug;182(4):1290-1306. doi: 10.1007/s12010-017-2399-2.
13.Fernández-Fernández M, MÁ. Sanromán, and D. Moldes. 2013.Recent developments and applications of immobilized laccase. Biotechnology Advances. 1808-25. doi: 10.1016/j.biotechadv.2012.02.013.
14.Ghiaci M, H. Aghaei, S. Soleimanian, M. Sedaghat, 2009. Enzyme immobilization Part 1. Modified bentonite as a new and efficient support for immobilization of Candidarugose lipase. Applied Clay Science., 43, 289–295.DOI:10.1016/j.clay.2008.09.008.
15.Gupta, V., S. Khamparia, I. Tyagi, D. Jaspal, and A. Malviya, 2015. Decolorization of mixture of dyes: A critical review. Global Journal of Environmental Science and Management, 1, 71-94. 10.7508/gjesm.2015.01.007.
16.Huang W-C, W. Wang, C. Xue, and X. Mao, 2018. Effective Enzyme Immobilization onto a Magnetic Chitin Nanofiber Composite. ACS Sustainable Chemistry & Engineering., 6, 8118–8124. https://doi.org/10.1021/acssuschemeng.8b01150
17. Kalral, K. R., Chauhan, M. Shavez, and S. Sachdeva, 2013. Isolation of laccase producing Trichoderma Spp. and effect of pH and temperature on its activity. International Journal of Chemistry and Technology Research. 5(5): 2229-2235.
18. Kanagaraj J, T. Senthilvelan, and R. Panda, 2015. Degradation of azo dyes by laccase: biological method to reduce pollution load in dye wastewater. Clean Technologies and Environmental Policy 17, 1443–1456. https://doi.org/10.1007/s10098-014-0869-6.
19. Katuri K, S. Venkata Mohan, and P. Sarma, 2009. Laccase-membrane reactors for decolorization of an acid azo dye in aqueous phase: Process optimization. Water Research 43, 3647–3658. doi:10.1016/j.watres.2009.05.028.
20.Lehninger A, D. Nelson, and M. Cox, 2000. Principles of Biochemistry (p. 1200). Worth Publishers Inc.: N.Y.
21.LI, Qing zhu and et al. 2009. Lead desorption from modified spent grain. Transactions of Nonferrous Metals Society of China (English Edition), 19(5), 1371–1376. https://doi.org/10.1016/S1003-6326(08)60452-5.
22.Lu Y, Q. Yang, and Y. Chen, 2017. Enhanced Activity of Immobilized Horseradish Peroxidase by Carbon Nanospheres for Phenols Removal. Clean - Soil, Air, Water 45(2): 1600077. doi:10.1002/clen.201600077.
23. Ma Q. Y, TJ Logan, and S. J. Traina,.1995. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environmental Science & Technology. 29(4):1118-26. doi: 10.1021/es00004a034.
24. Mahmoodi N. M, M. Arabloo, and J. Abdi, 2014. Laccase immobilized manganese ferrite nanoparticle: synthesis and LSSVM intelligent modeling of decolorization. Water Research. 67:216-26. doi: 10.1016/j.watres.2014.09.011.
25. Mbouguen, J. K.; E. Ngameni;and A. Walcarius,. 2006. Organoclay-enzyme film electrodes. Analytica Chimica Acta, 578, 145–155. doi: 10.1016/j.aca.2006.06.075.
26.Moilanen U, J. Osma, E. Winquist, M. Leisola, and S. Couto, 2010. Decolorization of simulated textile dye baths by crude laccases from Trametes hirsuta and Cerrena unicolor. Engineering in Life Sciences., 10, 242 247. https://doi.org/10.1002/elsc.200900095.
27.Noeline, B. F, D. M Manohar, ,and T. S Anirudhan, 2005. "Kinetic and equilibrium modeling of lead(Ⅱ) sorption from water and wastewater by polymerized banana stem in a batch reactor [J]. Separation and Purification Technology.Vol. 45,pp. 131−140.
28.Osma J, 2009. Production of Laccases by the White-Rot Fungus Trametes Pubescens for Their Potential Application to Synthetic Dye Treatment. doctoral Dissertation; Universitat Rovira I Virgili: Tarragona.
29.Pandey, D., A. Daverey, and K. Arunachalam. 2020 .Biochar: Production, properties and emerging role as a support for enzyme immobilization. Journal of Cleaner Production. Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.120267
30.Ridha M, S. Hussein, Z. Alismaeel, M. Atiya,and G. Aziz, .2020. Biodegradation of reactive dyes by some bacteria using response surface methodology as an optimization technique. Alexandria Engineering Journal. 59(5), 3551–3563. https://doi.org/10.1016/j.aej.2020.06.001.
31. Ridha, A. I., and M. J. M-Ridha,. 2023. Determination of the optimum conditions for removal of congo red Dye by peroxidase enzyme plant. Al-Khwarizmi Engineering Journal, 19(2), 15–25. https://doi.org/10.22153/kej.2023.03.001
32. Robbinson P, P. Dunnil, and M. D. Lilly. 1971. Porous glass as a solid support for immobilization or affinity chromatography of enzymes. Biochimica et Biophysica Acta (BBA) - Enzymology,24:659–61. DOI: 10.1016/0005-2744(71)90160-4.
33. Roriz M. S, J. F. Osma, J. A. Teixeira, and S. Rodríguez Couto, 2009. Application of response surface methodological approach to optimise Reactive Black 5 decolouration by crude laccase from Trametes pubescens. Journal of Hazardous Materials.; 169: 691–696. doi: 10.1016/j.jhazmat.2009.03.150 PMID: 19409701.
34.Sadoon zahraa, and M. M., Ridha., 2020. Removal of reactive dyes by electro coagulation process from aqueous solution, Journal of Engineering, 26(2), pp. 14–28. doi: 10.31026/j.eng.2020.02.02
35.Sedaghat M, M. Ghiaci, H. Aghaei,and S Soleimanian-Zad, 2009. Enzyme immobilization. Part 4. Immobilization of alkaline phosphatase on Na-sepiolite and modified sepiolite. Applied Clay Science. 46, 131–135. https://doi.org/10.1016/j.clay.2009.07.021
36.Soejoko DS and M. O. Tjia, 2002. Infrared spectroscopy and X-ray diffraction study on the morphological variations of carbonate and phosphate compounds in giant prawn (Macrobrachium rosenbergii) skeletons during its moulting period Journal of Materials Science. 38, 2087–2093.
doi:https://doi.org/10.1023/A:1023566227836.
37. Sridharan, R., Krishnaswamy, V., Archana, K. M. et al. Integrated approach on azo dyes degradation using laccase enzyme and Cul nanoparticle. SN Appl. Sci. 3, 370 (2021). https://doi.org/10.1007/s42452-021-04164-9
38.Taheran M, M. Naghdi, S. K. Brar, E. Knystautas, M Verma, RY Surampalli,and JR Valero, 2016. Development of adsorptive membranes by confinement of activated biochar into electrospun nanofibers. Beilstein Journl of Nanotechnology. 7:1556-1563. doi: 10.3762/bjnano.7.149.
39. Thurston C, 1994. The structure and function of fungal laccases. Microbiology, 140,19–26. https://doi.org/10.1099/13500872-140-1-19.
40. Tlaiaa Y.S, S.I Hussein, and M.J M-Ridha. 2023. “Evaluation the properties of purified laccase extracted from some local plants under the optimum conditions”. Iraqi Journal of Agricultural Sciences 54 (4):1101-12. https://doi.org/10.36103/ijas.v54i4.1802.
41.Van der Zee F. P, and S. Villaverde. 2005 Combined anaerobic-aerobic treatment of azo dyes--a short review of bioreactor studies. Water Research. Apr;39(8):1425-40. doi: 10.1016/j.watres.2005.03.007.
42.Wang, Shuai and et al. 2016. Oxidative removal of phenol by HRP-immobilized beads and its environmental toxicology assessment. Ecotoxicology and Environmental Safety, 130, 234–239. https://doi.org/10.1016/j.ecoenv.2016.04.022.
43.Weetall, H. H., and A. M. Filbert, 1974 Porous Glass for Affinity Chromatography Applications. Methods in Enzymology 34, 59–72. doi:10.1016/S00766879(74)34007-4.
44.Xu R, C. Chi, F. Li, and B. Zhang, 2013. Laccase-polyacrylonitrile nanofibrous membrane: highly immobilized, stable, reusable, and efficacious for 2,4,6-trichlorophenol removal. ACS Applied Materials and Interfaces, 5(23), 12554–12560.https://doi.org/10.1021/am403849q.
45.Xu R, Y. Si, and B. Zhang, 2014. Triclosan removal by laccase immobilized on mesoporous nanofibers: Strong adsorption and efficient degradation. Chemical Engineering Journal 255, 63–70. doi:10.1016/j.cej.2014.06.060.
46.Xu, L.; Sun, J.; Qaria, M.A.; Gao, L.; Zhu, D. Dye Decoloring Peroxidase Structure, Catalytic Properties and Applications: Current Advancement and Futurity. Catalysts 2021, 11, 955. https://doi.org/10.3390/catal11080955
47.Yaohua, G., X.ping, J. feng, and S. keren, 2019. Co-immobilization of laccase and ABTS onto novel dual-functionalized cellulose beads for highly improved biodegradation of indole. Journal of Hazardous Materials, 365, 118–124. https://doi.org/10.1016/j.jhazmat.2018.10.076
48. Zdarta J, K. Antecka, R. Frankowski, A. Zgoła-Grześkowiak, H. Ehrlich, and T Jesionowski. 2018.The effect of operational parameters on the biodegradation of bisphenols by Trametes versicolor laccase immobilized on Hippospongia communis spongin scaffolds. Science of The Total Environment. Feb 15;615:784-795.
doi: 10.1016/j.scitotenv.2017.09.213
49. Zhang, Di and et al. 2017. Laccase immobilized on magnetic nanoparticles by dopamine polymerization for 4-chlorophenol removal. Green Energy Environment., 2, 393–400. doi:10.1016/j.gee.2017.04.001
50. Zou H, and Y. Wang. 2017. Azo dyes wastewater treatment and simultaneous electricity generation in a novel process of electrolysis cell combined with microbial fuel cell. Bioresource Technology. Jul;235:167-175.


2.jpg)
