EFFECT OF PROTEIN CONCENTRATE WITHDRAWAL AND REDUCING THE CRUDE PROTEIN IN DIETS AND ADDING AMINO ACIDS ON PRODUCTION PERFORMANCE OF LAYING HENS
DOI:
https://doi.org/10.36103/kg97ax72Keywords:
methionine, lysine, threonine, Lohmann Brown.Abstract
The study was aimed to demonstrate the effect of withdrawing the protein concentrate and reducing the crude protein to the level of (16 and 15%) in the diets and supplementing them with a mixture of amino acids (methionine, lysine and threonine) at a rate of 1, 1.5, 2% on the productive performance of laying hens. 128 laying hens of the Lohmann Brown were used, at the age of 21 weeks. They were randomly distributed in to 8 treatments, with 8 replications for each treatment, as each replicate includes 2 chickens (16 chickens/treatment). The experimental treatments were as follows: T1 the control (standard diet), T2 a treatment devoid of the protein concentrate, and the T3, T4, and T5 Reducing the percentage of crude protein by 1% and adding a mixture of amino acids by 1, 1.5, and 2%, respectively , and the T6, T7, and T8 Reducing the percentage of crude protein by 2% and adding a mixture of amino acids by 1, 1.5, and 2%, respectively. The results showed that there were no significant differences in the interaction rates for the protein reduction treatments 1 and 2%, but it was observed that there was a significant superiority (P>0.05) in egg production, egg weight rate, feed consumption rate, feed conversion efficiency, egg mass and rate of body weight is in favor of treatments adding a mixture of amino acids at a rate of 1.5 and 2% and with a reduced percentage of protein 1 and 2% compared to the control treatment with out of the protein concentrate. It can be concluded from this study that adding a mixture of amino acids at a rate of 1.5 and 2% and reducing the percentage of protein by (1 and 2%) led to a significant improvement in most productive traits compared to the control treatment (with out of protein concentrate).
References
1. Alagawany, M. M., M. M . El-Hindawy, M. E. A. El-Hack, M. Arif, and S. A.El-Sayed. 2020. Influence of low-protein diet with different levels of amino acids on laying hen performance, quality and egg composition. Anais da Academia Brasileira de Ciências, 92(01), e20180230.
https://doi.org/10.1590/0001-3765202020180230
2. Al-Bayati, O. I., and H. A. Al-Mashhadani. 2023. Effect of a Low-Protein Diet with Different Levels of Amino Acid Mixture in Laying Hens on their Performance and Some Qualitative Characteristics of Eggs. In IOP Conference Series: Earth and Environmental Science (Vol. 1262, No. 7, p. 072077). IOP Publishing.
http://dx.doi.org/10.1088/1755-1315/1262/7/072077
3. Al-Masari, A. I. and H. Q. Al-Himdany. 2022. Effect of adding Articoke leaves extract powder (CYnarascolymus L.) to the diet on the productive performance of broiler. Iraqi. J. Agic. Sci, 53(1): 9-15.
https://doi.org/10.36103/ijas.v53i1.1500
4. Almeida, V. R., A. N. Dias, C. F. D. Bueno, F. A. P. Couto, P. A. Rodrigues, W. C. L. Nogueira, and D. E. Faria Filho. 2012. Crude protein and metabolizable energy levels for layers reared in hot climates. Brazilian Journal of Poultry Science, 14, 203-208.
https://doi.org/10.1590/S1516-635X2012000300007
5. Attia, Y. A., F. Bovera, J. Wang, M. A. Al-Harthi, and W. K. Kim. 2020. Multiple amino acid supplementations to low-protein diets: effect on performance, carcass yield, meat quality and nitrogen excretion of finishing broilers under hot climate conditions. Animals, 10(6), 973.https://doi.org/10.3390/ani10060973
6. Bunchasak, C. 2009. Role of dietary methionine in poultry production. The J. of Poult. Sci, 46(3): 169-179
.https://doi.org/10.2141/jpsa.46.169.
7. Castro, F. L. D. S. and W. K. Kim. 2020. Secondary functions of arginine and sulfur amino acids in poultry health. Anim, 10(11): 2106. https://doi.org/10.3390/ani10112106
8. Chen, Y. P., Y. F. Cheng, X. H. Li, W. L. Yang, C. Wen, S. Zhuang. and . Y. M.Zhou. 2017. Effects of threonine supplementation on the growth performance, immunity, oxidative status, intestinal integrity, and barrier function of broilers at the early age. Poultry Sci, 96(2): 405-413.https://doi.org/10.3382/ps/pew240
9. Chen, Y., H. Zhang, Y. Cheng, Y., Li, C. Wen. and. Y. Zhou. 2018. Dietary l-threonine supplementation attenuates lipopolysacc-haride-induced inflammatory responses and intestinal barrier damage of broiler chickens at an early age. Brit. J. of Nutri, 119(11): 1254-1262.
https://doi.org/10.1017/S0007114518000740
10. Ding, Y., X., Bu, N., Zhang, L., Li, and X. Zou. 2016. Effects of metabolizable energy and crude protein levels on laying performance, egg quality and serum biochemical indices of Fengda-1 layers. Animal Nutrition, 2(2), 93-98.
https://doi.org/10.1016/j.aninu.2016.03.006
11. Duncan, D. 1955. Multiple rang and multiple F. Test. Biometrics, 11: 1- 24.https://psycnet.apa.org/doi/10.2307/3001478
12. Farkhoy, M., M. Modirsanei O. Ghavidel, , M. Sadegh. and S. Jafarnejad. 2012. Evaluation of protein concentration and limiting amino acids including lysine and met+ cys in prestarter diet on performance of broilers. Veterinary Medicine Inter, 39;1- 7. https://doi.org/10.1155/2012/394189
13. Geng, S., S. Huang, Q. Ma, F. Li, Y. Gao, L. Zhao. and J. Zhang. 2021. Alterations and correlations of the gut microbiome, performance, egg quality, and serum biochemical indexes in laying hens with low-protein amino acid-deficient diets. ACS omega, 6(20): 13094-13104.
https://doi.org/10.1021/acsomega.1c00739
14. Hamodi, J. S., and F. H, Al-Amidi, 2019. Effect of supplementation Herbal Methionine as substitute Synthetic Methionine in the quality characteristics of the eggs of Japanese Quail. Journal of Kerbala for Agricultural Sciences, 4(4), 132-152.
https://doi.org/10.59658/jkas.v4i4.308
15. Junqueira, O. M., A. C. De Laurentiz, R. da Silva Filardi , E. A. Rodrigues. and E. M. C. Casartelli. 2006. Effects of energy and protein levels on egg quality and performance of laying hens at early second production cycle. J. of Applied Poultry Res , 15(1): 110-115.https://doi.org/10.1093/japr/15.1.110
16. Kachungwa Lugata, J., A. D. S. V. Ortega, and C. Szabó. 2022. The Role of Methionine Supplementation on Oxidative Stress and Antioxidant Status of Poultry-A Review. Agri, 12(10): 1701.https://doi.org/10.3390/agriculture12101701
17. Kidd, M. T., C. W. Maynard, and G. J. Mullenix. 2021. "Progress of amino acid nutrition for diet protein reduction in poultry." Journal of animal science and biotechnology 12 (1): 45. https://doi.org/10.1186/s 40104-021-00576-8
18. Kikusato, M., S. Sudo. and M. Toyomizu. 2015. Methionine deficiency leads to hepatic fat accretion via impairment of fatty acid import by carnitine palmitoyltransferase I. Briti Poultry Sci, 56(2): 225-231.
https://doi.org/10.1080/00071668.2014.996529
19. Kingori, A. M., J. K. Tuitoek, H. K. Muiruri, and A. M. Wachira. 2010. Effect of dietary crude protein levels on egg production, hatchability and post-hatch offspring performance of indigenous chickens. Inter. J.of Poult Sci, 9(4): 324-329.
http://www.pjbs.org/ijps/fin1378.pdf
20. Li, P., and G. Wu. 2022. Important roles of amino acids in immune responses. British Journal of Nutrition, 127(3): 398-402.https://doi.org/10.1017/S0007114521004566
21. Ma, M., S. Geng, M. Liu, L. Zhao, J. Zhang, S. Huang, and Q. Ma. 2021. Effects of different methionine levels in low protein diets on production performance, reproductive system, metabolism, and gut microbiota in laying hens. Frontiers in Nutrition, 8, 739676.https://doi.org/10.3389/fnut.2021.739676
22. Macelline, S. P., M. Toghyani, P. V. Chrystal, P. H. Selle, and S. Y. Liu. 2021. Amino acid requirements for laying hens: a comprehensive review. Poultry .Sci, 100(5): 101036.https://doi.org/10.1016/j.psj.2021.101036
23. Manju, G. U., B. S. V. Reddy, G. Gloridoss, T. M. Prabhu, K. S. Giridhar, and N. Suma. 2015. Effect of supplementation of lysine producing microbes vis-a-vis source and level of dietary protein on performance and egg quality characteristics of post-peak layers. Veterinary World, 8(4): 453. https://doi 10.14202/vetworld.2015.453-460
24. McAuley, J. L., S. K. Linden, C. W. Png, R. M. King, H. L. Pennington, S. J. Gendler, and M. A. McGuckin. 2007. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. The J .of Clinical Investigation, 117(8): 2313-2324.
https://doi.org/10.1172/JCI26705.
25. Meng, G. H., D. Song, L. B. Li, C. J. Yang, Z. X., Qu. and Y. P. Gao. 2017. Dietary methionine requirement of Jing Brown layer hens from 9 to 17 weeks of age. J. of Animal Physiology and Animal Nutrition, 101(5): 925-935. https://doi.org/10.1111/jpn.12525
26. National Research Council (N. R. C.). 1994. Nutrient requirement of poultry. 9th revisited National academy press, Washington D. C., U.S.A. https://doi.org /10.17226/2114
27. Novak, C., H. M. Yakout, and S. E. Scheideler. 2006. The effect of dietary protein level and total sulfur amino acid: lysine ratio on egg production parameters and egg yield in Hy-Line W-98 hens. Poultry sci, 85(12):2195-2206.https://doi.org/10.1093/ps/85.12.2195
28. Oluwabiyi, C. T., J. Zhao, H. Jiao, X. Wang, H. Li, Y. Zhou, and H. Lin. 2022. Effects of a rearing dietary protein regimen on productive performance, egg quality, and bone quality of laying hens. The Journal of Poultry Science, 59(4), 328-337.
https://doi.org/10.2141/jpsa.0220042
29. Omara, I. I. 2012. Protein-sparing effect of DL-Methionine and choline supplementation of low-protein diets on productivity in laying hens. Egypt. J. of Animal Produ ., 49(2): 219-231.https://dx.doi.org/10.21608/ejap.2012.94338
30. Rama Rao, S. V., V. Ravindran, M. V. L. N. Raju, T. Srilatha, and A. K. Panda. 2014. Effect of different concentrations of metabolisable energy and protein on performance of White Leghorn layers in a tropical climate. British Poultry Science, 55(4): 532-539.
https://doi.org/10.1080/00071668.2014.935997
31. Rao, S. R., V. Ravindran, T. Srilatha, A. K. Panda, and M. V. L. N. Raju. 2011. Effect of dietary concentrations of energy, crude protein, lysine, and methionine on the performance of White Leghorn layers in the tropics. J. of Applied Poultry Res., 20(4): 528-541. https://doi.org/10.3382/japr.2011-00355
32. Saleh, A. A., K. A. Amber, M. M. Soliman, M. Y. Soliman, W. A. Morsy, M. Shukry, and M. H. Alzawqari. 2021. Effect of low protein diets with amino acids supplementation on growth performance, carcass traits, blood parameters and muscle amino acids profile in broiler chickens under high ambient temperature. Agriculture, 11(2), 185.https://doi.org/10.3390/agriculture11020185
33. SAS. 2012. SAS/STAT user’s Guide Statistical. Version 9.1thed.AS. Institute Inc. Gary, NC.USA
34. Scappaticcio, R., L. Cámara, J. Herrera, G. G. Mateos, A. F. de Juan, and G. Fondevila. 2022. Influence of the energy concentration and the standardized ileal digestible lysine content of the diet on performance and egg quality of brown-egg laying hens from 18 to 41 weeks of age. Poultry Science, 101(12): 102197.
https://doi.org/10.1016/j.psj.2022.102197
35. Tang, Q., P. Tan, N. Ma, and X. Ma. 2021. Physiological functions of threonine in animals: beyond nutrition metabolism. Nutrients, 13(8), 2592.
https://doi.org/10.3390/nu13082592
36. Uyanga, V. A., Q. Xin, M. Sun, J. Zhao, X. Wang, H. Jiao, and H. Lin. 2022. Effects of dietary L-arginine on the production performance and gene expression of reproductive hormones in laying hens fed low crude protein diets. Poultry Science, 101(5): 101816.
https://doi.org/10.1016/j.psj.2022.101816
37. van der Klein, S. A., M. J. Zuidhof, and G. Y. Bédécarrats. 2020 . Diurnal and seasonal dynamics affecting egg production in meat chickens: A review of mechanisms associated with reproductive dysregulation. Animal Reproduction Science, 213, 106257.
https://doi.org/10.1016/j.anireprosci.2019.106257
38. Wu, G. 2009. Amino acids: metabolism, functions, and nutrition. Springer . Amino Acids, 37: 1-17.
https://doi.org /10.1007/s00726-009-0269-0.
39. Wu, G. 2013. Functional amino acids in nutrition and health. Springer .Amino Acids, 45, 407-411. https://doi.org/10.1007/s 00726-013-1500-6
40. Zeweil, H. S., A. A. Abdalah, M. H. Ahmed. and R. A. Marwa. 2011. Effect of different levels of protein and methionine on performance of Baheij laying hens and environmental pollution. Egy. Poultry Sci. J., 31(3): 621-639.
http://www.epsaegypt.com/pdf/2011_sep
41. Zhang, J., S. Geng, Y. Zhu, L. Li, L. Zhao, Q. Ma, and S. Huang, 2024. Effects of dietary methionine supplementation on the growth performance, immune responses, antioxidant capacity, and subsequent development of layer chicks. Poultry Science, 103(3), 103382.
https://doi.org/10.1016/j.psj.2023.103382
42. Zhang, Q., X. Chen, S. D. Eicher, K. M. Ajuwon, and T. J. Applegate. 2017. Effect of threonine on secretory immune system using a chicken intestinal ex vivo model with lipopolysaccharide challenge. Poultry Science, 96(9): 3043-3051.
https://doi.org/10.3382/ps/pex111
43. Zhang, Q., X. Chen, S. D. Eicher, K. M. Ajuwon, and T. J. Applegate. 2016. Effect of threonine deficiency on intestinal integrity and immune response to feed withdrawal combined with coccidial vaccine challenge in broiler chicks. British Journal of Nutrition, 116(12): 2030-2043.


2.jpg)
