EFFECTS OF INSTANT PUMPKIN SOUP: IN VIVO ANALYSIS ON WISTAR RAT’S GROWTH, SERUM Β-CAROTENE, ANTIOXIDANT ENZYME

Authors

  • Nurrahman
  • Rr. A. Ayuningtyas
  • D. Yonanta
  • K. Nugraheni

DOI:

https://doi.org/10.36103/z74b9735

Keywords:

pumpkin, instant soup, growth, β-carotene, lipid profile antioxidant, oxidative stress

Abstract

This study aims to determine the effect of instant pumpkin soup consumption on the rats' growth, β-carotene levels, Antioxidant Enzyme, Malondialdehyde, and lipid profile. 30 male Wistar rats, 8-10 weeks, were divided equally into six groups. Control-negative (C-) rats were maintained on the AIN-93 diet. Control positive (C+) rats were given AIN-93+beef fat. Instant pumpkin soup groups (IPS 20, 40, 60, and 80) were given AIN-93+beef fat+instant pumpkin soup (20, 40, 60, and 80 g/kg of standard diet, respectively). Blood serum was collected and subjected to lipid profile, MDA (TBARS method), antioxidant analysis (DPPH), endogenous antioxidant enzyme, and β-carotene analysis. Data were analyzed using ANOVA followed by post hoc LSD. All rats in each group were shown a significant growth pattern. The antioxidant activity of IPS treatment groups showed insignificant (p>0.05) improvement in a dose-dependent manner. Insignificant improvements in antioxidant enzymes were also found in IPS Treatment groups. There is a significant (p<0.05) reduction of MDA in the treatment groups, with IPS 80 as the most potent dose.

References

1. Alasalvar C, S. K. Chang, B. Bolling, W.Y. Oh, and F. Shahidi, 2021. Specialty seeds: Nutrients, bioactives, bioavailability, and health benefits: A comprehensive review. Compr Rev Food Sci Food Saf.;20(3):2382–427. DOI: 10.1111/1541-4337.12730

2. Batool M, M.M.A.N. Ranjha, U. Roobab, M. F. Manzoor, U. Farooq, H. Nadeem, et al. 2020. Nutritional value, phytochemical potential, and therapeutic benefits of pumpkin beta-karoten, aktivitas antioksidan dan sifat organoleptik sup labu kuning instan. J Pangan dan Gizi.;10(2):61–72. doi: 10.3390/plants11111394

3. Böhm V, G. Lietz, B. Olmedilla-Alonso, D. Phelan, E. Reboul, D. Bánati, et al. 2021. From carotenoid intake to carotenoid blood and tissue concentrations-implications for dietary intake recommendations. Nutr Rev.;79(5):544–73. DOI: 10.1093/nutrit/nuaa008

4. Bratovcic A. 2020. Antioxidant Enzymes and their Role in Preventing Cell Damage. Acta Sci Nutr Heal.;4(3):01–7.

5. Carlson D.W.A, C. True, and C. G. 2024. Wilson Oxidative stress and food as medicine. Front Nutr.;11(August):1–8.

6. Chen L, R. Long, G. Huang, and H. Huang 2019. Extraction and antioxidant activities in vivo of pumpkin polysaccharide. Ind Crops Prod. 2020;146(August):112199.

7. de Carvalho L. M. J, P. B. Gomes, O. Godoy RL de, S. Pacheco, P.H.F.do Monte, de J.L.V Carvalho, et al. 2012. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Res Int.;47(2):337–40.

8. Dyshlyuk L, O. Babich, A. Prosekov, S. Ivanova, V. Pavsky, and Y. Yang, 2017. In vivo study of medical and biological properties of functional bakery products with the addition of pumpkin flour. Bioact Carbohydrates Diet Fibre.;12:20–4.

9. Federika, K., M. Martanto, and A. Susanto, 2017. View of federika Peranan β-karotendalam Sistem Imun untuk mencegah kanker. J Biol Pembelajarannya, 2017: 4(1):1-8.

10. Fernández-López J, C. Botella-Martínez, C. N. R. de Vera, M. E. Sayas-Barberá, M. Viuda-Martos, E. Sánchez-Zapata, et al. 2020. Vegetable soups and creams: Raw materials, processing, health benefits, and innovation trends. Plants.;9(12):1–33.

11. Fierascu R. C, A. Ortan, I. C. Fierascu, and I. Fierascu, 2018. In vitro and in vivo evaluation of antioxidant properties of wild-growing plants. A short review. Curr Opin Food Sci.;24:1–8.

12.Gong J, L. Wang, J. Wu, Y. Yuan, R.J. Mu, Y. Du, et al. 2019. The rheological and physicochemical properties of a novel thermosensitive hydrogel based on konjac glucomannan/gum tragacanth. LWT.;100:271–7.

13. Harmayani E, V. Aprilia, Y. Marsono, 2014. Characterization of glucomannan from Amorphophallus oncophyllus and its prebiotic activity in vivo. Carbohydr Polym.;112:475–9.

14. Hussain A, T. Kausar, S. Sehar, A. Sarwar, A.H. Ashraf, M. A. Jamil, et al. 2022. A Comprehensive review of functional ingredients, especially bioactive compounds present in pumpkin peel, flesh and seeds, and their health benefits. Food Chem Adv.;1(April):100067.

15. Hussain A, T. Kausar, S. Sehar, A. Sarwar, M. Y. Quddoos, J. Aslam, et al. 2023. A review on biochemical constituents of pumpkin and their role as pharma foods; a key strategy to improve health in post COVID 19 period. Food Prod Process Nutr.;5(1).

16. Jena A.B, R. R. Samal, N. K. Bhol, and A. K. Duttaroy, 2017. Cellular Red-Ox system in health and disease: The latest update. Biomed Pharmacother. 2023;162:114606. untuk Mencegah Kanker. J Biol Pembelajarannya.;4(1):1–8.

17. Kementrian Kesehatan Republik Indonesia. 2018. Tabel Komposisi Pangan Indonesia. 2017th ed. Kementrian Kesehatan RI. Jakarta: Kementerian Kesehatan Republik Indonesia;.

18. Kotha R.R, F.S. Tareq, E. Yildiz, and D. L. Luthria, 2022. Oxidative Stress and Antioxidants—A Critical Review on In Vitro Antioxidant Assays. Antioxidants.;11(12).

19. Krishnamurthy, H. K, I. Rajavelu, M. Pereira, V. Jayaraman, K. Krishna, T. Wang, et al. 2024. Inside the genome: understanding genetic influences on oxidative stress. Front Genet.;15(June):1–15.

20. Kusbandari A, and H. Susanti, 2017. Kandungan Beta Karoten dan Aktivitas Penangkapan Radikal Bebas terhadap DPPH (1-1-Difenil 2-Pikrihydrazil) Ekstrak Buah Blewah (Cucumis melo var. Cantalupensis L) secara Spektrofotometri UV-Visibel. J Pharm Sci Community.;14(1):37–42.

21. Lolge R. M, M. K .Vidyapeeth, I. B. Agarkar, I. Rb Kshirsagar, I. B. Patil, I. S. Shinde et al. 2022. Technology development for preparation of Instant soup mix powder from yam, drumstick leaves and roselle calyces. Pharma Innov J.;11(12):676–81.

22. Meng K, H. Gao, J . Zeng, J. Zhao, Y. Qin, G. Li, et al. 2021. Rheological and microstructural characterization of wheat dough formulated with konjac glucomannan. J Sci Food Agric.;101(10):4373–9.

23.Milani A, M. Basirnejad, S. Shahbazi, and A. Bolhassani., 2017. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol.;174(11):1290–324.

24.Nani A, B. Murtaza, A. Sayed, N. Akhtar, and A. Hichami, 2021. Antioxidant and Anti-Inflammatory Potential of Polyphenols. Molecules.;26:985.

25. Nurrahman, Astuti R. 2020. Analisis komposisi zat gizi dan antioksidan beberapa varietas labu kuning (Cucurbita moschata Durch). Agrointek.;16(4):544–52.

26. Panova I. G, and A. S. Tatikolov. 2023. Endogenous and Exogenous Antioxidants as Agents Preventing the Negative Effects of Contrast Media (Contrast-Induced Nephropathy). Pharmaceuticals.;16(8).

27. Pérez-gálvez A, I. Viera, and M. Roca 2020. Carotenoids and chlorophylls as antioxidants. Antioxidants.;9(6):1–39.

28.Ribeiro D, A., P. Sousa, J. M. P. Nicola, A. T. Ferreira de Oliveira, Rufino, and M. Silva, et al. 2020. β-Carotene and its physiological metabolites: Effects on oxidative status regulation and genotoxicity in in vitro models. Food Chem Toxicol.;141(April).

29. Rifan, N., S. Aminah 2017. Pengaruh Jenis Alat Pengering Terhadap Karakteristik Fisik, Kimia, dan Organoleptik Sup Labu Kuning Instan. J Pangan dan Gizi.;7(2):104–16.

30. Setiawan B, S. S. Aulia, T. Sinaga, and A. Sulaeman, 2021. Nutritional content and characteristics of pumpkin cream soup with tempeh addition as supplementary food for elderly. simonne A (Amy), editor. Int J Food Sci. 2021;:6976357.

31. Stahl W, and H. Sies, 2003. Antioxidant activity of carotenoids. Mol Aspects Med. Dec;24(6):345–51.

32. Wahidah B. F, and N. Afiati, Jumari. 2021. Community knowledge of amorphophallus muelleri blume: Cultivation and utilization in central Java, Indonesia. Biodiversitas.;22(7):2731–8.

33.Wang Y, R. Branicky, A. Noë, and S. Hekimi, 2018. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol.;217(6):1915–28.

34. Widjanarko S. B, S..N..A. Jamil, E. Ni’maturohmah, and W. D. R. Putri. 2023. The Potential of Porang (Amorphophallus muelleri Blume) Flour and Porang Flour Formulation as an Anti-Diabetes Type-2 Agent. HAYATI J Biosci.;30(5):855–63.

35. Wu J,and Q. Zhong, 2016. Encapsulation of konjac glucomannan in oil droplets to reduce viscosity of aqueous suspensions and gradually increase viscosity during simulated gastric digestion. J Food Eng.;175:104–7.

36. Yan H, B. Cai, Y. Cheng, G. Guo, D. Li, X. Yao, et al. 2012. Mechanism of lowering water activity of konjac glucomannan and its derivatives. Food Hydrocoll.;26(2):383–8.

37. Yulianti D. E. R, and W. Nurrahman, Hersoelistyorini Pengaruh Penambahan Maizena Terhadap Kadar Beta-Karoten, Aktivitas Antioksidan dan Sifat Organoleptik Sup labu Kuning Instan. J Pangan dan Gizi. 2020;10(2):61–72.

38..Zeb A, and M. Murkovic Determination of thermal oxidation and oxidation products of β-carotene in corn oil triacylglycerols. Food Res Int. 2013;50(2):534–44.

Downloads

Published

2025-06-28

Issue

Section

Articles

How to Cite

Nurrahman, Rr. A. Ayuningtyas, D. Yonanta, & K. Nugraheni. (2025). EFFECTS OF INSTANT PUMPKIN SOUP: IN VIVO ANALYSIS ON WISTAR RAT’S GROWTH, SERUM Β-CAROTENE, ANTIOXIDANT ENZYME . IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(3), 1222-1230. https://doi.org/10.36103/z74b9735