EFFECT OF ADDING DIETARY ROSEMARY LEAVES ON IN VITRO METHANE PRODUCTION AND SOME RUMEN FERMENTATION TRAITS

Authors

DOI:

https://doi.org/10.36103/603fnx31

Keywords:

Ruminants, methane, feed additives, volatile fatty acid, global warmer, sustainable agriculture

Abstract

This study aimed to examine how including dietary dried rosemary leaves (DRL) of Holstein bulls affects methane production and certain rumen fluid characteristics in vitro. Rumen fluid was obtained from newly slaughtered calves and used in two separate trials: one for gas production and another for digestion. In the trials, two diets were implemented. The first was the standard diet for bulls, consisting of a concentrate diet and alfalfa hay (control group). The second diet included the addition of 250 g DRL to the essential diet. There was a significant decrease (P≤0.01) in methane and N-NH3 production, as well as in the ratio between unsaturated fatty acids (USF) and saturated fatty acids in the rosemary group compared to the control. In the first trial, the concentrations of both volatile and non-volatile fatty acids as well as the total USF increased significantly (P≤0.01) in the rosemary group compared to the control group. In the second trial, there was a significant increase (P≤0.01) in the digestibility of dry and organic matters and in metabolizable energy in the rosemary group. There was a decrease in the population of protozoa in the rosemary group compared to the control group. The addition of DRL can be seen as beneficial in modifying rumen fermentation. This can lead to a reduction in methane production and an improvement in rumen fermentation traits. As a result, there is an increase in the undegradable protein in the rumen that enters the small intestine. This ultimately means that more amino acids are available for production, and methane emissions from bulls can be reduced, contributing to sustainable agricultural development goals.

References

1. Abdulhameed, M.S. and S.M. Eidan.2025 Dietary rosemary supplementation and its influence on some semen and blood biochemical traits of Holstein bulls. Iraqi Journal of Agricultral Sciences, 56(1), 367-374. https://doi.org/10.36103/1z2y1n67

2. Abdulkareem. T. A., F.F. Ibrahim, M. S. Hassan, O. A. Mohamed, and W. E. Lateef. 2020. Effect of adding amino acids combinations to Tris extender for improving post cryopreserved semen characteristics of Holstein bulls. Biochem. Cell. Arch., 20(1),697-701. https://doi.org/10.35124/bca.2020.20.1.697

3. Al-Arif , M. A., L. T. Suwanti, A.S. Estoepangestie, and M. Lamid. 2017. The nutrients contents, dry matter digestibility, organic matter digestibility, total digestible nutrient, and NH3 rumen production of three kinds of cattle feeding models. KnE Life Sciences, 3(6), 338-343. https://doi.org/10.18502/kls.v3i6.1142

4..Alem, W. T. 2024. Effect of herbal extracts in animal nutrition as feed additives. Heliyon. 67(3),1-8. https://doi.org/10.1016/j.heliyon.2024.e24973

5. AL-Nuaimi, A.J. and T.A. Abdulkareem. 2020. Effect of adding Olea europaea and Rosmarinus officinalis aqueous extracts and calcium chloride to Tris extender on post-cryopreservative sperms cell individual motility and live sperm percentage for low semen quality of Holstein bulls. Biochem. Cell. Arch. 20(1), 493-498. https://doi.10.35124/bca.2020.20.1.493

6. A.O.A.C. (Association of Official Analytical Chemists). 2010. Official Methods of Analysis. 16th. edn., Washington, D.C.381.73, 2483-2492.

7. Ayemele, A. G., M. Tilahun, S. Lingling, S. A. Elsaadawy, Z. Guo, G. Zhao, J. Xu, and D. Bu. 2021. Oxidative stress in dairy cows: Insights into the mechanistic mode of actions and mitigating strategies. Antioxidants. 10, 1918. https://doi.org/10.3390/antiox10121918.

8. Banjaw, D. T., H. G. Megersa, D. Abewoy, and D. T. Lema. 2024. Rosemary recent classification, plant characteristics, economic parts, marketing uses, chemical composition, and cultivation. International Journal of Scientific Research and Engineering Development. 7(1),157-166. https://doi.org/10.5281/zenodo.10523558

9. Boo, Y. C., 2024. Therapeutic potential and mechanisms of rosmarinic acid and the extracts of lamiaceae plants for the treatment of fibrosis of various organs. Antioxidants. 13(5) 1-27. https://doi.10.3390/antiox13020146.

10. Brutti, D.D., M.E.A. Canozzi, 2023. E.D. Sartori D. Colombatto, and J.O.J. Barcellos. 2023.Effects of the use of tannins on the ruminal fermentation of cattle: A meta-analysis and meta-regression. Animal Feed Science and Technology, 306, 115806. https://doi.org/10.1016/j.anifeedsci.2023.115806

11. Cetin, I., E. Cetin, D. Karakcı, E. Ercetin, O. Bugdayci Kırmızı, and D. Yeşilbağ. 2024. The effects of rosemary essential oil supplementation on growth performance, rumen flora and antioxidant blood parameters in growing Merino lambs. Journal of the Hellenic Veterinary Medical Society, 74(4), 6607–6614. https://doi.org/10.12681/jhvms.31728

12. Cheng, Y., J. Liu, and Z. Ling. 2022. Short-chain fatty acids-producing probiotics: a novel source of psychobiotics. Crit. Rev. Food. Sci. Nutr., 62, 7929-7959. https://doi:10.1080/10408398.2021.1920884

13. Cobellis, G., A. Petrozzi, C. Forte, G. Acuti, M. Orrù, M. C. Marcotullio, A. Aquino, A. Nicolini, V. Mazza, and M. Trabalza-Marinucci. 2015. Evaluation of the effects of mitigation on methane and ammonia production by using Origanum vulgare L. and Rosmarinus officinalis L. essential oils on in vitro rumen fermentation systems. Sustainability, 7, 12856-12869 https://doi:10.3390/su70912856

14. Daş, B. D. 2023. Effect of rosemary (Rosmarinus officinalis L.) powder supplementation on silage fermentation characteristics, silage quality, and in vitro digestibility in corn silage. Turkish Journal of Agriculture - Food Science and Technology, 12(2),305-309. https://doi.org/10.24925/turjaf.v12i2.305-309.6538

15. Delgadillo-Ruiz, L., R. Bañuelos-Valenzuela, P. Gallegos-Flores, F. Echavarría-Cháirez, C. Meza-López, and N. Gaytán-Saldaña. 2021. Modification of ruminal fermentation in vitro for methane mitigation by adding essential oils from plants and terpenoid compounds. Abanico Veterinario, 11, 1-12. http://dx.doi.org/10.21929/abavet2021.

16. de Paula, E.M., R.B. Samensari, E. Machado, L.M. Pereira, F.J. Maia, E.H. Yoshimura, R. Franzolin, A.P. Faciola, and L.M. Zeoula. 2016. Effects of phenolic compounds on ruminal protozoa population, ruminal fermentation, and digestion in water buffaloes. Livestock Science, 185, 136–141. https://doi.org/10.1016/j.livsci.2016.01.021

17. Farghaly, M.M. and M.A.M. Abdullah. 2021. Effect of dietary oregano, rosemary and peppermint as feed additives on nutrients digestibility, rumen fermentation and performance of fattening sheep. Egyptian Journal of Nutrition and Feeds,24(3), 365-376. http://doi.10.21608/ejnf.2021.210838

18. Farzan, M., M. Farzan, M. Shahrani, S. P. Navabi, H. R. Vardanjani, H. Amini-Khoei, and S. Shabani.2024. Neuroprotective properties of betulin, betulinic acid, and ursolic acid as triterpenoids derivatives: a comprehensive review of mechanistic studies. Nutr. Neurosci., 27(3), 223-240. https://doi:10.1080/1028415X.2023.2180865

19. Fievez, V., O.J. Babayemi, and D. Demeyer.2005. Estimation of direct and indirect gas production in syringes: a tool to estimate short chain fatty acid. Anim. Feed Sci. Tech., 123 (1),197-210. https://doi.org/10.1016/j.anifeedsci.2005.05.001

20. Guneya, M., S. Karacaa, A. Erdogana, C. Kora, S. Kaleb, M. Onalanc, N. Demirela, and T.Bingolb. 2021. Effects of dietary supplementation with rosemary oil on methanogenic bacteria density, blood and rumen parameters and meat quality of fattening lambs. Italian J. Anim. Sci., 20, 794–805. https://doi.org/10.1080/1828051X.2021.1906165

21. Hodge, I., P. Quille, and S. O’Connell. 2024. A review of potential feed additives intended for carbon footprint reduction through methane abatement in dairy cattle. Animals, 14, 568. https://doi.org/10.3390/ani14040568

22. Jenkins, T.C. 1993. Lipid metabolism in the rumen. J. Dairy Sci., 76, 3851–3863. https://doi.org/10.3168/jds.S0022-0302(93)77727-9

23. Kholif, A.E. 2023. A Review of effect of saponins on ruminal fermentation, health and performance of ruminants. Vet. Sci., 10(7), 450-469. https://doi:10.3390/vetsci10070450

24. Kim, E.T., L. Guan le, S.J. Lee, S.M. Lee, S.S. Lee, I.D. Lee, S.K. Lee, and S.S. Lee. 2015. Effects of flavonoid-rich plant extracts on in vitro ruminal methanogenesis, microbial populations and fermentation characteristics. Asian-Australas J. Anim. Sci., 28(4),530-537. https://doi:10.5713/ajas.14.0692

25. Kong, F., S. Wang, D. Dai, Z. Cao, Y. Wang, S. Li, and W. Wang. 2022. Preliminary investigation of the effects of rosemary extract supplementation on milk production and rumen fermentation in high-producing dairy cows, Antioxidants, 11, 1715. https://doi.org/10.3390/antiox11091715.

26. Króliczewska, B., E. Pecka-Kiełb, and J. Bujok. 2023. Strategies used to reduce methane emissions from ruminants: Controversies and issues. Agriculture, 13, 602. https://doi.org/10.3390/agriculture13030602

27. Lin, X.Y., Z.Y. Hu, S.Z. Zhang, G.W. Cheng, Q.L. Hou, Y. Wang, Z.G. Yan, K.R. Shi, and Z.H. Wang. 2020. A study on the mechanism regulating acetate to propionate ratio in rumen fermentation by dietary carbohydrate type. Advances in Bioscience and Biotechnology, 11, 369-390. https://doi:org/10.4236/abb.2020.118026

28.Liu, X., J. Li, L. Hao, A. Degen, D. Wang, Y. Ma, J. Niu, Y. Cheng, and S. Liu. 2022. Effect of the ratio of dietary metabolizable energy to nitrogen content on production performance, serum metabolites, rumen fermentation parameters, and bacterial diversity in yaks. Front. Microbiol.,13,1013980. https://doi.10.3389/fmicb.2022.1013980

29. MAFF (Ministry of Agriculture, Fisheries and Food). 1975. Energy Allowances and Feeding Systems for Ruminants. Technical Bulletin 33, Her Majesty’s Stationary Office, London. Tech.Bull.No.33.

30. Menke, K.H., and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev., 28, 7-55. https://ci.nii.ac.jp/naid/10025840911/

31. Min, B-R, S. Lee, H. Jung, D.N. Miller, and R. Chen. 2022. Enteric methane emissions and animal performance in dairy and beef cattle production: strategies, opportunities, and impact of reducing emissions. Animals, 12(8),948-975. https://doi.org/10.3390/ani12080948

32. Mohamed, O.A. and T. A. Abdulkareem. 2020. Some post-cryopreserved semen characteristics of Holstein bulls as influenced by adding aquoeus extract of Urtica dioica and date palm pollen powder to Tris extender. Plant Archives 20(1), 461-467.

33. Molho-Ortiza, A. A., A. Romero-Péreza, E. Ramírez-Bribiescab, C. C. Márquez-Motaa, F. A. Castrejón-Pinedaa, and L. Coronaa. 2022. Effect of essential oils and aqueous extracts of plants on in vitro rumen fermentation and methane production. J. Anim. Behav. Biometeorol., 10,2210. https://doi:org/10.31893/jabb.22010

34. Musa, K. S. and T. A. Abdulkareem. 2023. Protein profiles in seminal plasma of Iraqi buffalo bulls (Bubalus bubalis) associated with fresh and cryopreserved semen quality. IOP Conf. Ser.: Earth Environ. Sci., 1262, 072095. https://doi:10.1088/1755-1315/1262/7/072095

35. Musa, K. S. and T. A. Abdulkareem. 2024. Some biochemical attributes in seminal plasma of Iraqi buffalo bulls and their relation to the semen quality. Iraqi J. Agric. Sci., 55(1),402-412. https://doi.org/10.36103/nrfkex70

36. Ningrat, R.W.S., M Z. Erpomen, and H. Suryani. 2017. Effects of doses and different sources of tannins on in vitro ruminal methane, volatile fatty acids production and on bacteria and protozoa populations. Asian J. Anim. Sci., 11, 47-53. https://doi.10.3923/ajas.2017.47.53

37. Oskoueian, E., N. Abdullah, and A. Oskoueian. 2013. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population, BioMed Research International, 349129, 8. https://doi.org/10.1155/2013/349129

38. Sun, X.G., Y. Wang, T. Xie, Z.T. Yang, J.D. Wang, Y.H. Zheng, C. Guo, Y. Zhang, Q.Q. Wang, Z.H. Wang, W. Wang, Y.J. Wang, H.J. Yang, and S.L. Li. 2021. Effects of high-forage diets containing raw flaxseeds or soybean on in vitro ruminal fermentation, gas emission, and microbial profile. Microorganisms, 9(11),2304. https://doi:10.3390/microorganisms9112304

39. Tilley, J.M.A. and R.A. Terry. 1963. A two stage technique for the in vitro digestion of forage crops. J. Br. Grassland Sci., 18, 104–111.

40. Ueta, I., Y.Nakamura, S. Kawakubo, and Y. Saito. 2018. Determination of aqueous formic and acids by purge-and-trap analysis with a needle-type extraction device and gas chromatography barrier discharge ionization detector. Anal. Sci., 34(2),201-205. https://doi:10.2116/analsci.34.201

41. Umbreit, W. W., R. H. Burris, and J. F. Stanffer. 1964. Manometric Techniques. 4th ed. Burgess Pub. Co., Minneapolis.

42.Wang, K., X. Nan, K. Chu, J. Tong, L. Yang, S, Zheng G, Zhao, L. Jiang, and B. Xiong. 2018 Shifts of hydrogen metabolism from methanogenesis to propionate production in response to replacement of forage fiber with non-forage fiber sources in diets In vitro. Front. Microbiol., 9, 2764.

https://doi:org/10.3389/fmicb.2018.02764

43. Wang, Z., L. Yin, L. Liu, X. Lan, J. He, F. Wan, W. Shen, S. Tang, Z. Tan, and Y. Yang. 2022. Tannic acid reduced apparent protein digestibility and induced oxidative stress and inflammatory response without altering growth performance and ruminal microbiota diversity of xiangdong black goats. Front. Vet. Sci., 9,1004841. https://doi:10.3389/fvets.2022.1004841

44. Williams, A. G. and G. S. Coleman 1992. The Rumen Protozoa. New York, NY: Springer New York. https://doi:10.1007/978-1-4612-2776-2

45. Yang, Z., S. Liu, T. Xie, Q. Wang, Z. Wang, H. Yang, S. Li, and W. Wang. 2022. Effect of unsaturated fatty acid ratio in vitro on rumen fermentation, methane concentration, and microbial profile. Fermentation,8(10),540. https://doi.org/10.3390/fermentation8100540

46. Zhang, H., Z.wang, and O. Liu, 2015. Development and validation of a GC-FID method for quantitative analysis of oleic acid and related fatty acids. J. Pharm. Analy., 5(4), 223-230. https://doi.10.1016/j.jpha.2015.01.005

47. Zhao, Y., X. Nan, L. Yang, S. Zheng, L. Jiang, and B. Xiong. 2020. A review of enteric methane emission measurement techniques in ruminants. Animals, 10(6),1004. https://doi.10.3390/ani10061004

48. Zhou, K., Y. Bao, and G. Zhao. 2019. Effects of dietary crude protein and tannic acid on rumen fermentation, rumen microbiota and nutrient digestion in beef cattle. Arch. Anim. Nutr., 73, 30–43. https://doi:10.1080/1745039X.2018.1545502

Downloads

Published

2025-06-28

Issue

Section

Articles

How to Cite

M.S. Abdulhameed, & S. M. Eidan. (2025). EFFECT OF ADDING DIETARY ROSEMARY LEAVES ON IN VITRO METHANE PRODUCTION AND SOME RUMEN FERMENTATION TRAITS. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(3), 956-965. https://doi.org/10.36103/603fnx31

Most read articles by the same author(s)