MOLECULAR DETECTION OF ADHESIVE MATRIX MOLECULES FOR Staphylococcus aureus ISOLATED FROM DIFFERENT SAMPLES
DOI:
https://doi.org/10.36103/ngr0nm29Keywords:
MRSA, virulence factor genes, MSCRAMs.Abstract
The Staphylococcus aureus is a ubiquitous Gram-positive bacterium, which may resident in various parts of body as a nqiormal flora, but this bacterium can also cause community and nosocomial infections, which enhanced by different virulence factors. Hence, the goal of the recent work is isolation and identification of S. aureus form different sources and investigate the capability of these isolates to synthase microbial surface components recognizing adhesive matrix molecules (MSCRAMs). For achieving this aim, a total of 326 samples were obtained from various clinical sources, including wounds, blood, acne, skin, vagina and gum. Among these samples, only 100 isolates were confirmed as S. aureus, after subjecting to conventional identification techniques as well as molecular detection of nuc gene utilizing PCR technique. The molecular investigation of mecA gene was carried out for confirmation of the methicillin-resistant S. aureus (MRSA). The results show 70 isolates were MRSA and the rest of these isolates were regarded as methicillin-sensitive S. aureus (MSSA). The investigation of virulence factor presence was carried out by molecular detection of nine genes (fnbA, fnbB,eno, ebps, fib, bbp,clfA, clfB, and cna), which encode to MSCRAMs of S. aureus. The findings revealed that the majority of MRSA isolates harbored clfA (52%% of total isolates), followed by eno, clfB, fib, bbp, fnbA, fnbB, ebps, and cna with (35, 34, 33, 25, 22, 21, 19 and 16%), respectively. This study indicates thatdifferent of MRSA isolates may harbor one or more these genes in different distribution.
References
1. Al-Hayali, O.Z., M.F. Al Marjani, and A., Maleki, 2024. Eradication of heterogeneous vancomycin intermediate Staphylococcus aureus (hVISA) using Peganum harmala L. seeds extracts. Iraqi Journal of Agricultural Sciences, 55(2):757-768.
DOI: https://doi.org/10.36103/fg0kcs57
2. Adesida, S.A. 2007. Associated risk factors and pulsed field gel electrophoresis of nasal isolates of Staphylococcus aureus from medical students in a tertiary hospital in Lagos, Nigeria. Brazilian Journal of Infectious Diseases 11, 63–69.
DOI: 10.1590/s1413-86702007000100016.
3. Ahmed, S.,S, S., Meghji. R.J, Williams, B. Henderson, , J. H. Brock, and S.P. Nair, 2001. Staphylococcusaureus fibronectin binding proteins are essential for internalization by osteoblasts but do not account for differences in intracellular levels of bacteria. Infection and immunity 69(5), 2872–2877.
DOI: 10.1128/IAI.69.5.2872-2877.2001.
4. Angus, D.C. and T. van der Poll, 2013. Severe sepsis and septic shock. N Engl J Med 369, 840–851.DOI: 10.1056/NEJMra1208623
5. Arciola, C.R., D, Campoccia.S.Gamberini, L. Baldassarri, and L. Montanaro, 2005. Prevalence of cnafnbA and fnbB adhesin genes among Staphylococcus aureus isolates from orthopedic infections associated to different types of implant. FEMS microbiology letters 246(1), 81–86.
DOI: 10.1016/j.femsle.2005.03.035
6. Atshan, S.S. 2012. Prevalence of adhesion and regulation of biofilm-related genes in different clones of Staphylococcus aureus. Journal of BioMedicine and Biotechnology,30(4),155-158.
DOI: 10.1155/2012/976972
7. Becker, R. 2018. The new S language. Crs Press.33(3),134-145. URL: https://2u.pw/6Dfn17Pg
8. Bien, J.O.Sokolova. and B. Bozko. 2011. Characterization of virulence factors of Staphylococcus aureus: novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response. Journal of Pathogens 2011. DOI: 10.4061/2011/601905
9. BodénWästfelt, M.K. and J.-I, Flock. 1995. Incidence of the highly conserved fib gene and expression of the fibrinogen-binding (Fib) protein among clinical isolates of Staphylococcus aureus.Journal of Clinical Microbiology 33(9), 2347–2352.
DOI: 10.1128/jcm.33.9.2347-2352.1995
10. Boyce, J. M. 1998. Are the epidemiology and microbiology of methicillin-resistant Staphylococcus aureus changing? Jama 279(8), 623–624.
DOI: 10.1001/jama.279.8.623
11. Brakstad, O. G., K, Aasbakk,. and J. A. Maeland, 1992. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. Journal of Clinical Microbiology 30(7), 1654–1660.DOI: 10.1128/jcm.30.7.1654-1660.1992
12. Campoccia, D. L. Montanaro. S. Ravaioli, I. Cangini, P. Speziale, P and C.R.Arciola, 2009. Description of a new group of variants of the Staphylococcus aureus elastin-binding protein that lacks an entire DNA segment of 180 bp. The International Journal of Artificial Organs 32(9), 621–629.
DOI: 10.1177/039139880903200911
13. Chambers, H. F. 1997. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clinical microbiology reviews 10(4), 781–791.DOI: 10.1128/CMR.10.4.781
14. Cunningham, R., A, Cockayne,. and H. Humphreys, 1996. Clinical and molecular aspects of the pathogenesis of Staphylococcus aureus bone and joint infections. Journal of medical microbiology 44(3), 157–164.
DOI: 10.1099/00222615-44-3-157
15. Díaz-Ramos, À., A, Roig-Borrellas., A. García-Melero, and R. López-Alemany, 2012. α-Enolase, a multifunctional protein: its role on pathophysiological situations. Journal of Biomedicine and Biotechnology 2012.
DOI: 10.1155/2012/156795
16. Dziewanowska, K., J.M, Patti. K.W. C.F.Deobald, Bayles, W.R. G.A. Trumble, and Bohach, 1999. Fibronectin binding protein and host cell tyrosine kinase are required for internalization of Staphylococcus aureus by epithelial cells. Infection and immunity 67(9), 4673–4678.
DOI: 10.1128/IAI.67.9.4673-4678.1999
17. Eliezer, D., S. S. M. Townsend, P. J Sawyer, B. Major, and W.B Mendes, 2011. System-justifying beliefs moderate the relationship between perceived discrimination and resting blood pressure. Social Cognition 29(3), 303–321.
DOI: https://doi.org/10.1521/soco.2011.29.3.303
18. Foster, T.J. 2017. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews 41(3), 430–449.
DOI: 10.1093/femsre/fux007
19. Gardete, S. and A, Tomasz,. 2014. Mechanisms of vancomycin resistance in Staphylococcus aureus. The Journal of Clinical Investigation 124(7), 2836–2840.
DOI: 10.1172/JCI68834
20. Ghasemian, A., S.N.Peerayeh, B. Bakhshi, and M. Mirzaee, 2015. The microbial surface components recognizing adhesive matrix molecules ( Mscramms) genes among clinical isolates of Staphylococcus aureus from hospitalized children. Iranian journal of pathology 10(4), 258. URL: https://pubmed.ncbi.nlm.nih.gov/26351495/
21. Gurusamy.K.S., R. Koti.,C.D. Toon, P, Wilson. and B. R. Davidson, 2013. Antibiotic therapy for the treatment of methicillin‐resistant Staphylococcus aureus (Mrsa) infections in surgical wounds. Cochrane Database of Systematic Reviews (8).
DOI: 10.1002/14651858.CD009726.pub2
22. Heilmann, C. 2011. Adhesion mechanisms of staphylococci. Bacterial adhesion , 105–123.DOI: 10.1007/978-94-007-0940-9_7
23. Herman-Bausier, 2016. Mechanical strength and inhibition of the Staphylococcus aureus collagen-binding protein Cna. Mbio 7(5), 1529-16.DOI: 10.1128/mBio.01529-16
24. Herman-Bausier, P.S. El-Kirat-Chatel,. T. J. Foster, J. A. Geoghegan, and Y.F. Dufrêne, 2015. Staphylococcus aureus fibronectin-binding protein A mediates cell-cell adhesion through low-affinity homophilic bonds. MBio 6(3), 413-15.DOI: 10.1128/mBio.00413-15
25. Hersh, A. L., H. F. Chambers, J. H. Maselli, and R. Gonzales, 2008. National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections. Archives of Internal Medicine 168(14), 1585–1591.
DOI: 10.1001/archinte.168.14.1585
26. Higgins, J., A. Loughman., van K.P.M. Kessel, J.A.G. van Strijp, and T.J. Foster, 2006. Clumping factor A of Staphylococcus aureus inhibits phagocytosis by human polymorphonuclear leucocytes. FEMS microbiology letters 258(2), 290–296.
DOI: 10.1111/j.1574-6968.2006.00229.x
27. Hooper, D.C. and G.A. Jacoby, 2015. Mechanisms of drug resistance: quinolone resistance. Annals of theNew York Academy of Sciences 1354(1), 12–31.
DOI: 10.1111/nyas.12830
28. Humphreys, H. 2012. Staphylococcus aureus: the enduring pathogen in surgery. the surgeon 10(6), 357–360.
DOI: 10.1016/j.surge.2012.05.003
29. Jabur, E.Q. and N. Kandala, 2022. The production of biofilm from methicillin resistant Staphylococcusaureus isolated from post-surgical operation inflammation. Iraqi Journal of Science , 3688–3702.
DOI: https://doi.org/10.24996/ijs.2022.63.9.3
30. Jensen, S.O. and B.R. Lyon, 2009. Genetics of antimicrobial resistance in Staphylococcus aureus. Future microbiology 4(5), 565–582.DOI: 10.2217/fmb.09.30
31. Klein, R.C., M. H. Fabres-Klein, Brito, M.A.V.P., L.G. Fietto, and A. Ribon, de O.B. 2012. Staphylococcus aureus of bovine origin: genetic diversity, prevalence and the expression of adhesin-encoding genes. Veterinary microbiology 160(1–2), 183–188.DOI: 10.1016/j.vetmic.2012.05.025
32. Koosha, R.Z., E.M., Hosseini,Aghdam, S.G. Tajandareh, and A.A.I. Fooladi, 2016. Distribution of tsst-1 and mecA genes in Staphylococcus aureus isolated from clinical specimens. Jundishapur Journal of Microbiology 9(3). DOI: 10.5812/jjm.29057
33. Kot, B., H. I. Sytykiewicz,Sprawka, and Witeska, M. 2020. Effect of manuka honey on biofilm-associated genes expression during methicillin-resistant Staphylococcus aureus biofilm formation. Scientific reports 10(1), 1–12. DOI: 10.1038/s41598-020-70666-y
34. McCormack, M.G., A.J. Smith, A.N., M., AkramJackson,D. Robertson, and G.Edwards, 2015. Staphylococcus aureus and the oral cavity: an overlooked source of carriage and infection? American Journal of Infection Control 43(1), 35–37.
DOI: 10.1016/j.ajic.2014.09.015
35. McDevitt, D., P. Francois, P. Vaudaux, .and T.J. Foster, 1994. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Molecular microbiology 11(2), 237–248.
DOI: 10.1111/j.1365-2958.1994.tb00304.x
36. Mempel, M. et al. 2002. Invasion of human keratinocytes by Staphylococcus aureus and intracellular bacterial persistence represent haemolysin‐independent virulence mechanisms that are followed by features of necrotic and apoptotic keratinocyte cell death. British Journal of Dermatology 146(6), 943–951.DOI: 10.1046/j.1365-2133.2002.04752.x
37. Momtaz, H., E. Rahimi, and E. Tajbakhsh, 2010. Detection of some virulence factors in Staphylococcus aureus isolated from clinical and subclinical bovine mastitis in Iran. African Journal of Biotechnology 9(25), 3753–3758. DOI:10.5897/AJB2010.000-3243
38. Moran, G.J., A. Krishnadasan, R.J. Gorwitz, G.E.,Fosheim, L.K., McDougal, R.B. Carey, and D.A. Talan, 2006. Methicillin-resistant S. aureus infections among patients in the emergency department. New England Journal of Medicine 355(7), 666–674.DOI: 10.1056/NEJMoa055356
39. Mulcahy, M.E., J.A. Geoghegan, I.R., Monk, K.M., O’Keeffe, E.J, Walsh, T.J. Foster, and R.M. McLoughlin, 2012. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS pathogens 8(12), 1003092.DOI: 10.1371/journal.ppat.1003092
40. Nizami, D., D. Yunus, O., Burcin, D. Cemil, and K., Aydiner, 2010. Detection of adhesin genes and slime production among staphylococci in orthopaedic surgical wounds. African Journal of Microbiology Research 4(9), 708–715. URL: https://2u.pw/1TEFZVOt
41. Oh, J., A.L., Byrd, M., Park, H.H, Kong, J.A, Segre, and N.C.S., Program, 2016. Temporal stability of the human skin microbiome. Cell 165(4), 854–866.
DOI: 10.1016/j.cell.2016.04.008
42. Onanuga, A. and T.C. Temedie, 2011. Multidrug-resistant intestinal Staphylococcus aureus among self-medicated healthy adults in Amassoma, South-South, Nigeria. Journal of health, population, and Nutrition 29(5), 446.DOI: 10.3329/jhpn.v29i5.8898
43. O’Neill, E., H. Humphreys, and J. P. O’Gara, 2009. Carriage of both the fnbA and fnbB genes and growth at 37 C promote FnBP-mediated biofilm development in meticillin-resistant Staphylococcus aureus clinical isolates. Journal of Medical Microbiology 58(4), 399–402.
DOI: 10.1099/jmm.0.005504-0
44. Organization, W. H. 2019. Antimicrobial Resistance: Grlobal Report on Surveillance. Geneva: World Health Organization; 2014. Google Scholar, 232. URL: https://www.who.int/publications/b/31459
45. Osinupebi, O.A. et al. 2018. Prevalence of methicillin-resistant Staphylococcus aureus in Abeokuta, Nigeria. South Asian Journal of Research in Microbiology 1(1), 1–8.
DOI: 10.9734/SAJRM/2018/39801
46. Palma, M., S., Nozohoor, T. Schennings, A. Heimdahl, and J.I. Flock, 1996. Lack of the extracellular 19-kilodalton fibrinogen-binding protein from Staphylococcus aureus decreases virulence in experimental wound infection. Infection and immunity 64(12), 5284–5289.
DOI: 10.1128/iai.64.12.5284-5289.1996
47. Paniagua-Contreras, G., E., Monroy-Pérez, R. Gutiérrez-Lucas, T. Sainz-Espuñes, T., J. Bustos-Martínez, and S. Vaca, 2014. Genotypic characterization of methicillin-resistant Staphylococcus aureus strains isolated from the anterior nares and catheter of ambulatory hemodialysis patients in Mexico. Folia Microbiologica 59(4), 295–302.
DOI: 10.1007/s12223-013-0300-4
48. Pappas, G., A. P. Athanasoulia, D. K. Matthaiou, and M. E. Falagas, 2009. Thertrimethoprim- sulfamethoxazole for Methicillin-resistant Staphylococcus aureus: A Forgotten Alternative? Journal of Chemotherapy 21(2), 115–126.
DOI: 10.1179/joc.2009.21.2.115
49. Park, P.W., J. Rosenbloom, W.R. Abrams, J. Rosenbloom, and R.P. Mecham, 1996. Molecular cloning and expression of the gene for elastin-binding protein (ebpS) in Staphylococcus aureus. Journal of Biological Chemistry 271(26), 15803–15809.
DOI: 10.1074/jbc.271.26.15803
50. Patti, J.M., H. Jonsson, B., Guss, L.M. Switalski, K., Wiberg, M. Lindberg, and M. Höök, 1992. Molecular characterization and expression of a gene encoding a Staphylococcus aureus collagen adhesin. Journal of Biological Chemistry 267(7), pp. 4766–4772. URL: https://pubmed.ncbi.nlm.nih.gov/1311320/
51. Paul, D. v et al. 2009. Bergey’s Manual of Systematic Bacteriology. Williams, Georgia, USA , 470–471. URL: https://link.springer.com/book/10.1007/978-0-387-68489-5
52. Peacock, S.J., T.J. Foster, B.J. Cameron, and A.R. Berendt, 1999. Bacterial fibronectin-binding proteins and endothelial cell surface fibronectin mediate adherence of Staphylococcus aureus to resting human endothelial cells. Microbiology 145(12), pp. 3477–3486.DOI: 10.1099/00221287-145-12-3477
53. Quintiliani Jr, R. and P. Courvalin, 1995. Mechanisms of resistance to antimicrobial agents. Manual of Clinical Microbiology.44(5)124-128. URL: https://clinmicronow.org/doi/book/10.1128/97 81683670438.MCM
54. Rasheed, M. S. A., U. P. Tiwari, J. C. Jespersen, L. L. Bauer, and R. N. Dilger, 2020. Effects of methylsulfonylmethane and neutralizing anti–IL-10 antibody supplementation during a mild Eimeria challenge infection in broiler chickens. Poultry science 99(12), 6559–6568.
DOI: 10.1016/j.psj.2020.09.046
55. Rayner, C. and W.J. Munckhof, 2005. Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus. Internal Medicine Journal 35, S3-16.
DOI: 10.1111/j.1444-0903.2005.00976.x
56. Russell, C.D., A.L. McLean, C. Saunders, and I.F. Laurenson, 2014. Adjunctive rifampicin may improve outcomes in Staphylococcus aureus bacteraemia: a systematic review. Journal of Medical Microbiology 63(6), 841–848.
DOI: 10.1099/jmm.0.072280-0
57. Salazar, N. 2014. Staphylococcus aureus manganese transport protein C (MntC) is an extracellular matrix-and plasminogen-binding protein. PloS one 9(11), e112730.
DOI: 10.1371/journal.pone.0112730
58. Senok, A.C., H., Verstraelen, M. Temmerman, and G. A. Botta, 2009. Probiotics for the treatment of bacterial vaginosis. Cochrane Database of Systematic Reviews (4).
DOI: 10.1002/14651858.CD006289.pub2
59. Shore, A.C. et al. 2016. First report of cfr-carrying plasmids in the pandemic sequence type 22 methicillin-resistant Staphylococcus aureus staphylococcal cassette chromosome mec type IV clone. Antimicrobial Agents and chemotherapy 60(5), 3007–3015.
DOI: 10.1128/AAC.02949-15
60. Sollid, J.U.E., A.S. Furberg, A.M. Hanssen, and M. Johannessen, 2014. Staphylococcus aureus: determinants of human carriage. Infection, genetics and evolution 21, 531–541.
DOI: 10.1016/j.meegid.2013.03.020
61. Speziale, P. and G. Pietrocola, 2020. The multivalent role of fibronectin-binding proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in host infections. Frontiers in microbiology 11, 2054.
DOI: 10.3389/fmicb.2020.02054
62. Tang, J., J. Chen, Li, H., P. Zeng, and J, Li, 2013. Characterization of adhesin genes, staphylococcal nuclease, hemolysis, and biofilm formation among Staphylococcus aureus strains isolated from different sources. Foodborne Pathogens and Disease 10(9), 757–763.DOI: 10.1089/fpd.2012.1474
63. Tristan, A., L. Ying, M., Bes, J. Etienne, F. Vandenesch, and G. Lina, 2003. Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. Journal of clinical microbiology 41(9), 4465–4467.
DOI: 10.1128/JCM.41.9.4465-4467.2003
64. Tung, H., B. U. Guss, L. Hellman, , K. C. Perssonrubin, and Ryden, 2000. A bone sialoprotein-binding protein from Staphylococcus aureus: a member of the staphylococcal Sdr family. Biochemical Journal 345(3), 611–619. URL: https://pubmed.ncbi.nlm.nih.gov/10642520/
65. Usui, A., M.,Murai, K., Seki, J. Sakurada, and S. Masuda, 1992. Conspicuous ingestion of Staphylococcus aureus organisms by murine fibroblasts in vitro. Microbiology and Immunology 36(5), 545–550.
DOI: 10.1111/j.1348-0421.1992.tb02054.x
66. Vazquez, V., X. Liang, J.K. Horndahl, V.K, Ganesh, E. Smeds, T.J. Foster, and M. Hook, 2011. Fibrinogen is a ligand for the Staphylococcus aureus microbial surface components recognizing adhesive matrix molecules (Mscramm) bone sialoprotein-binding protein (Bbp). Journal of Biological Chemistry 286(34), 29797–29805.
DOI: 10.1074/jbc.M110.214981
67. Wilson, D.N. 2014. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nature Reviews Microbiology 12(1), 35–48.DOI: 10.1038/nrmicro3155
68. Wilson, J., R. Guy, S., Elgohari, E., Sheridan, J., Davies, T. Lamagni, and A. Pearson, 2011. Trends in sources of meticillin-resistant Staphylococcus aureus (Mrsa) bacteraemia: data from the national mandatory surveillance of Mrsabacteraemia in England, 2006–2009. Journal of Hospital Infection 79(3), 211–217.
DOI: 10.1016/j.jhin.2011.05.013
69. Yarovoy, J.Y., A.A. Monte, B.C. Knepper, and H.L. Young, 2019. Epidemiology of Community-Onset Staphylococcus aureus Bacteremia. Western Journal of Emergency Medicine 20(3), 438.
DOI: 10.5811/westjem.2019.2.41939
70 .Yassin, H.Y., A.K. Melconian, and S.S, Mahmood, 2022. Prevalence Of exfoliative toxin genes Among Clinical Isolates of Staphylococcus aureus In Iraq. Iraqi Journal of Agricultural Scienes 53(2): 465–470.
DOI: https://doi.org/10.36103/ijas.v53i2.1554
71. Zhang, K. et al. 2004. New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. Journal of Clinical Microbiology 42(11), 4947–4955.
DOI: 10.1128/JCM.42.11.4947-4955.2004
72. Zhang, K., J.-A., McClure, S., Elsayed, T., Louie, and J.M. Conly, 2005. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus.Journal of ClinicalMicrobiology 43(10), 5026–5033.
DOI: 10.1128/JCM.43.10.5026-5033.2005
72. Zhang, X., M., Wu, W., Zhuo, J., Gu, S., Zhang, J. Ge, and M. Yang, 2015. Crystal structures of Bbp from Staphylococcus aureus reveal the ligand binding mechanism with Fibrinogen α. Protein and cell 6(10), 757–766.
DOI: 10.1007/s13238-015-0205-x
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.