

GENE POLYMORPHISM 1RELATIONSHIP OF APOLIPOPROTEIN A- WITH SOME GROWTH TRAITS OF COMMON CARP (*CYPRINUS CARPIO* L.)

Othman M. Abdulmajeed^{1*} Mohammad S. Al-Khshali² , Ahmed W. Al Ameri²

¹ Department Animal Prod. College of Agricultural University of Anbar, Anbar, Ramadi, 31001, Iraq

² Department Animal Prod. College of Agricultural Eng. Science, University of Baghdad, Baghdad, 10011, Iraq

ABSTRACT

The study was conducted to investigate the relationship between the polymorphisms of A, B, C, D and E of the apolipoprotein A-1 (ApoA-1) gene with some traits (daily and total weight gain rate and feed conversion rate and efficiency) in 70 samples of common carp (*Cyprinus carpio*). There were significant differences in the growth traits of the genotypes A, B, C and D of the apolipoprotein A-1 gene compared to the genotype E. The results showed that the genotype C was significantly superior ($p \leq 0.05$) in the daily and total weight gain rates and reached the highest value of 0.56 and 39.42 g/fish, respectively, while the genotype E decreased to the lowest value of 0.14 and 9.50 g/fish, respectively. On the other hand, the feed conversion rate recorded highest significant effect ($p \leq 0.05$) at the genotype C and reached 5.13 Compared with the E genotype which recorded 9.6, the highest significant effect ($p \leq 0.05$) on the feed conversion efficiency trait was at the C genotype at a rate of 19.49% compared to the E genotype which reached 10.41%. We conclude from the above that the ApoA-1 gene may have an effect in improving the productive growth traits in common carp fish through its effect on the quantitative traits associated with the genetic phenotypes.

Keywords: Common carp. Quantitative traits. Phenotypes. Growth traits. ApoA-1.

Copyright© 2025. The Author (s). Published by College of Agricultural Engineering Sciences, University of Baghdad. This is an open-access article distributed under the term of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received: 14/3/2025, Accepted: 4/6/2025, Published: 26/1/2026

INTRODUCTION

Apolipoprotein is considered an important component of plasma lipoproteins, which has a function in promoting fat transfer, regulating enzyme activity, and directing the binding of lipoproteins in plasma to receptors (Simon, et al. 2011), as well as energy storage (Shen, et al. 2008). ApoA-1 regulates lipid deposition in the liver (Jobling 1993, Wang, et al. 2016.). reported that the levels of expression were significantly different from ApoA-1b in common carp before and after Re-feeding and heavy and light groups suggest that ApoA-1b plays an important role in regulating growth. Kondo et al. (2005) noted little similarity between fish lipoproteins and their mammalian counterparts. Analyses of tissue expression of

apoA-1 in some fish species showed that the liver was consistently the highest expressed, but more variable expression levels were observed in the intestine, gills, and skin (Villarroel, et al. 2007, Dietrich et al. 2014). Apolipoproteins influence food intake in fish, control of neuronal diseases, lipid metabolism and transport, as well as the multiple roles of these proteins. The ApoA-1 gene is the major component of high-density lipoproteins (HDL), which are major plasma proteins that perform diverse functions. However, their presence and roles are not well understood in many fish species. Previously, these ApoA-1 proteins were only known for lipid transport and metabolism, but later they were recognized to perform important immune

functions (Park et al. 2021). Considered diet is one of the main factors affecting fat content and its composition in muscle tissue of common carp (Mráz, & Pickova, 2011). Since fish are variable-temperature animals and fats are used as a primary source of energy, unlike mammals that primarily use carbohydrates, lipoproteins may have a unique role in fish compared to other vertebrates (Watanabe, 1982). Fish uses fats instead of carbohydrates as the main source of energy physiologically fat metabolism and lipoprotein functions are very important for homeostasis (Kondo et al. 2005). Where fish derive energy mainly from fats, which play an important role in the metabolism and growth of fish, therefore the process of fat metabolism appears to be more important to maintain the homeostasis balance in external organism's heat Ectotherms such as fish, more than those found in Homeotherms heat congeners (Kondo et al. 2005). Some studies have indicated that ApoA-1 is very important for fish growth and should be taken into account when developing a suitable aquaculture diet (Qu, et al. 2014). Fat in the liver appears to be regulated by the rate of fat synthesis and the rate of secretion of lipoprotein ,fat accumulates in the liver as droplets when the manufacturing rate is higher than the rate of excretion ,and the low rate of lipoprotein secretion may be responsible for high levels of fat in the liver in some fish such as puffer and flounder .More studies on lipoproteins are needed to clarify the mechanism of fat accumulation in fish (Amthauer, et al. 1989). Park et al. (2021) studied the transcriptional responses of the ApoAI gene in the fish Spotnape Ponyfish (*Nuchequula nuchalis*), which lives in different salinity environments, from estuaries to deep waters. He concluded that expression changes in the ApoAI gene in these fish may be linked to changes in lipid and glucose metabolism, and thus may stimulate different growth and

development, leading to different body sizes in *N. nuchalis*. However ,studies on the functions of ApoA 1-in fat metabolism in fish have not been conducted on a large scale despite the fact that fish uses fat as the main source of energy ,and because of the importance of ApoA 1-in both metabolism and the normal immune system (Sahoo, et al. 2017). In addition to the known roles in fat transport and absorption, many fish apolipoproteins are needed for normal organism and embryonic cell growth and tissue regeneration (Lange, et al. 2005), and immunomodulation innate (Concha, et al. 2004). It has a certain protective effect on the healthy growth of fish (Villarroel, et al. 2007). As well as its antibacterial-positive and Gram-negative activity as well as its anti-pathogenic activity in fish (Johnston, et al. 2008). Therefore, the study aims to study the effect of the relationship of polymorphisms the phenotype in some the growth traits of common carp fish.

MATERIALS AND METHODS

Experimental design

Common carp were obtained with weights ranging from 70-90 g from one of a fish farm. Fish were transported to the laboratory by a car equipped with an air and water pump to circulate the water and placed in large metal tank. Sterilization of fish was carried out using a 5 g / liter salt to remove bacteria, fungi and parasites. The fish were transferred to twelve glass tank filled with water of 60 liters, water was changed daily by 20 liters with liquefied water stock for 48 hours to dispose of chlorine, all the the glass tank were equipped with air pumps to provide continuous oxygen and 100 watts of temperature to ensure the proper temperature for the growth of common carp fish (Naser, et al. 2024).

Fish acclimation: Each fish was independently numbered by a Chinese numbering device, a pistol with a needle fitted with numbers and a DYMO printer for

printing numbers on small pieces of tape. Fish were distributed randomly and evenly on tanks with five fish/tank to acclimate them to the new conditions, a diet with protein content 27.06% was used for three meals a day, feeding 3% of body weight at the start of the experiment, depending on the appetite and acceptance of the fish, feeding was stopped 24 hours before the start of the experiment (6), the acclimation period lasted 15-day rounding off.

Studied Traits

Total Weight Gain (T.W.G.): Known as the amount of difference between the final weight and the initial weight of the fish was calculated as follows (Uten, 1979):

$$T.W.G. = F.W. - I.W.$$

As: (F.W) = Final weight (g)

Daily Growth Rate (D.G.R.)

Which is the amount of calculated weight gain per fish per day (g / day) It was calculated from the equation cited (Jobling, 1993):

$$D.G.R. = (W_2 - W_1) / (T_2 - T_1)$$

As:

W1 = initial weight (g)

W2 = Final weight (g)

$T_2 - T_1$ = Duration for the experiment or between the two weights Days.

Feed Conversion Ratio (F.C.R)

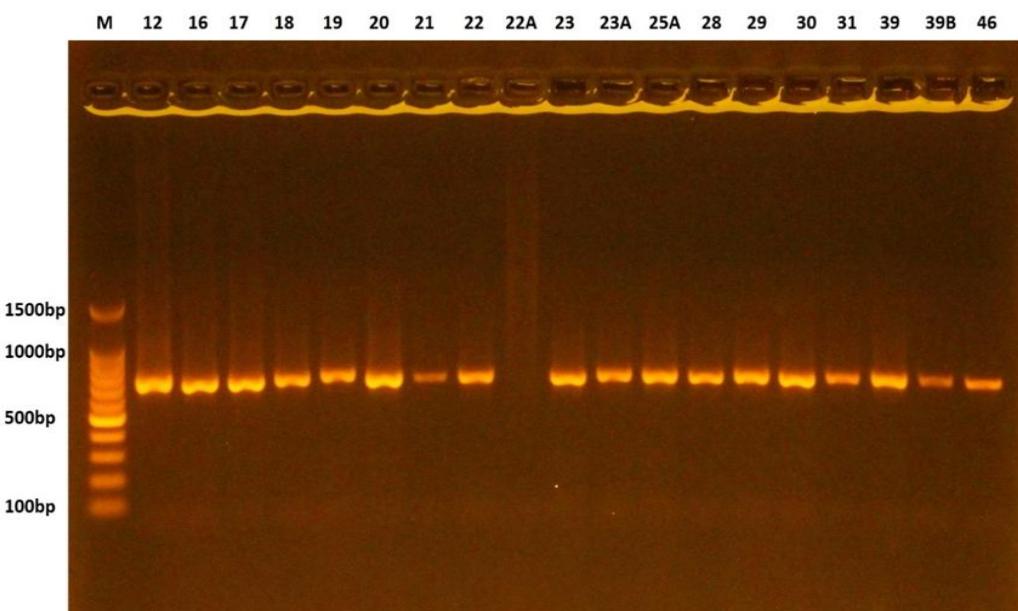
It is calculated according to the method mentioned (Uten, 1979):

Font type and size

$$= \frac{\text{Weight of dry feed intake (g / fish)}}{\text{Wet weight gains for fish (g / fish)}}$$

Feed Conversion Efficiency (F.C.E)

It is calculated according to the method mentioned (Uten, 1979)


Feed Conversion Efficiency

$$= \frac{\text{Wet weight gains for fish (g/fish)}}{\text{Weight of dry feed intake (g/fish)}} \times 100$$

RESULTS AND DISCUSSION

Extraction of the ApoA-1 gene

The ApoA-1 gene (Figure 4-1) was completed as a single band of 750 bp was reached after it was amplified by polymerase chain reaction (PCR), and a 5 μ l sample of the PCR product was carried out in a 1% acrose gel, after the voltage was set at 100 V for 80 minutes with the use of DNA fragments of known sizes (Marker) 100-1500 bp to determine the sizes of the extracted fragments, and the concentrations of the DNA samples ranged between 116-68 ng/ml.

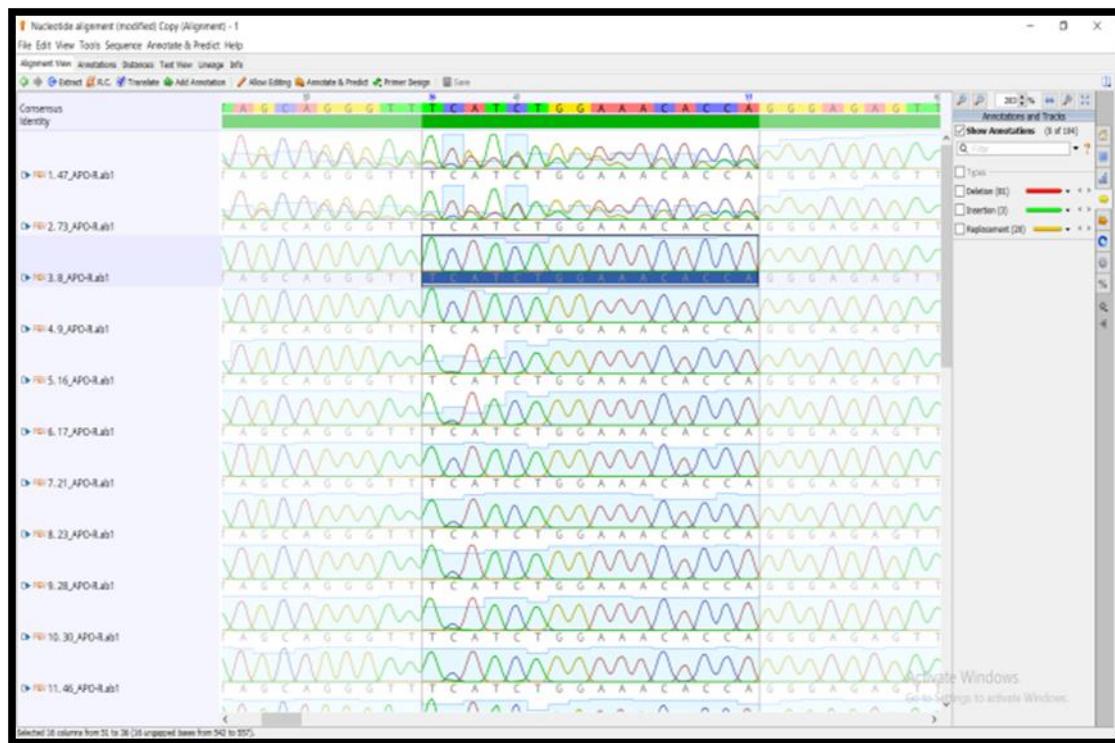

Figure 1. The extracted fragment of the ApoA-1 gene using PCR technology for common carp fish
Polymorphism of the ApoA-1 gene

Table (1-4) includes the numbers and percentages of the distribution of genetic phenotypes of common carp fish A, B, C, D, E and F, as the percentages of Polymorphism reached 44.78, 19.40, 28.36, 2.99, 2.99 and 1.49%, with numbers of 30, 13, 19, 2, 2 and 1, respectively. The results showed a highly significant superiority ($P<0.01$) for fish

carrying the Polymorphism and the least for those carrying the Polymorphism F. The reason may be due to the adaptation of fish with the genetic phenotype A to environmental conditions and their unsuitability to their counterparts with the Polymorphism F, in addition to the small sample size.

Table 1. Number and percentage of the frequency of Polymorphism of the ApoA-1 gene in common carp

Percentage	Numbers	Polymorphism
A	30	44.78
B	13	19.40
C	19	28.36
D	2	2.99
E	2	2.99
F	1	1.49
Total	67	100%
Chi square	---	61.32**
(P<0.01) **		

Figure 2. shows the genotypes A, B, C, D, E, and F of the ApoA-1 gene, which were identified using Geneious Software (version 10.1.3).

Table (2) includes effect of polymorphism of lipoprotein gene ApoA-1 in the traits rate of daily and total weight gain, feed conversion coefficient and feed conversion efficiency of

common carp fish and for 70 days from the start of the experiment, significant superiority was observed ($P<0.05$) for phenotype A, B, C and D in all the growth traits mentioned on the

phenotype E. An improvement was observed in the growth traits of the fish carrying the phenotype A, B, C and D probably due to the presence of phenotype that are related to lipoprotein gene ApoA-1, that affects the genotype associated with quantitative traits that are affected for environmental and genetic factors. Quantitative traits can be highly multi-gene, ie, influenced by more than one gene, as that increasing the genetic expression of ApoA-1 by increasing the mRNA copies will increase its association with cholesterol and phosphates found within the cells, thus increasing HDL, and increasing the metabolic rate and thus improving the growth traits, so these fish are more innate immunity and resistance to pathogens, due decreased all growth traits of the phenotype E. Perhaps as a result of the presence of the gene is a recessive pattern in the ApoA-1 gene, leading to low metabolism and low weight, phenotypes are influenced by genes as well as environmental factors, which may have been inappropriate for some fish because of the nature of its genotype bearing it, for example if fish can't obtain their basic nutrient needs, they can't produce specific proteins and therefore can't produce a specific phenotype. And this is one of the effects of environmental factors, differences in phenotype may sometimes be reversed because of the effect of a particular genotype on fish, affecting growth traits such as feed conversion efficiency and feed conversion coefficient. There may be more than one gene effect on phenotypic traits causing differences in rates of weight gain and growth, However, the effect of ApoA-1 gene remains important for the growth and health of common carp fish. The current study is consistent with (Shen, et al. 2008) He pointed out that the phosphate food fats increase the efficiency of the transfer of food such as fatty acids and fat from the intestine to the rest of the body possibly through the synthesis of

enhanced lipoprotein. The study agrees with (Li, et al. 2018) when he conducted a study on polymorphism of SNPs for Apo-lipoprotein gene and its association with the growth properties of large bass mouth fish, it was found that Apo is involved in the regulation of lipid absorption, so the polymorphic sites in this gene may affect the digestion and absorption of fat in feed when feeding the bass of the largemouth bass, affecting fish growth and metabolism (Li, et al. 2018). Agree with the study of (Abdelghany, & Ahmad., 2002) which have shown that an increase in the nutrition rate from the ideal level or when providing a greater amount of feed exceeds the level of saturation, the fish will not benefit from excess feed. As (Farhan, & Naser, 2024) points out, the determinant factor for nutrient efficiency is saturation. As well as what (Chowdhury, 2011) the increase in the feeding rate of 3, 4 and 5% of body weight in *Oreochromis niloticus* cultured in ponds did not significantly affect weight gain, final weight and growth rate specific. On the other hand, the results are consistent with what was indicated by (Wang, et al. 2016) a study of significantly different expression levels of apoA-1 before and after refeeding and between light and heavy groups of common carp, which indicates that apoA-1 plays an important role in growth regulation. The increased expression of apoA-1 in *C. carpio* upon starvation for 20 days may indicate that fish need to consume their own fat to maintain normal metabolism during fasting. Therefore, fish synthesize more apoA-1 proteins to transport fat during fasting and convert it to energy absorption from external food after refeeding. A similar phenomenon of increased expression levels of apoA-1 during fasting has been observed in different human populations (Afolabi, et al. 2007). Therefore, the nutritional balance between energy and protein in the fish diet will regulate gene expression, which is crucial for

supporting the expression of phenotypic productive traits, thus providing protective mechanisms against sudden, short-term and

chronic environmental stress after good growth.

Table 2. Relationship of polymorphism lipoprotein gene ApoA-1 with daily and total weight gain rates and feed conversion coefficient and the feed conversion efficiency for common carp fish

Polymorphism	Averages ± standard error			
	Daily gain rates g/fish / day	Total gain rates g/fish	Feed coefficient	Feed efficiency %
A	0.49±0.03	34.4±2.60	7.69±1.01	13.00±1.43
	a	a	A	a
B	0.54±0.05	38.07±4.06	5.68±0.63	17.60±2.07
	a	a	A	a
C	0.56±0.06	39.42±4.40	5.13±1.54	19.49±2.25
	a	a	A	a
D	0.45±0.06	31.5±4.50	6.8±0.97	15±2.14
	a	a	A	a
E	0.14±0.05	9.50±3.5	9.6±23.65-	10.41±2.05
	b	b	B	b
significant level	*	*	*	*

The averages with different letters within the same column vary significantly between them (P<0.05) * N.S.
Not significant.

CONCLUSIONS

The results of this study suggest that relativity must be considered when examining the association between polymorphisms A, B, C, D, and E of the Apolipoprotein A-1 (ApoA-1) gene and various growth parameters, including daily and total weight gain rates and feed conversion rate and efficiency. The ApoA-1 gene may influence the enhancement of productive growth features in common carp by impacting the quantitative traits linked to phenotypes.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

DECLARATION OF FUND

The authors declare that they have not received a fund.

REFERENCES

- Abdelghany, A. E. and Ahmad, M. H, 2002. Effects of feeding rates on growth and production of Nile tilapia, common carp and silver carp polycultured in fertilized ponds. Aquaculture Research 33:415-423.
- Amthauer R, Villanueva J, Vera MI, Concha M, and Krauskopf M., 1989. Characterization of the major plasma apolipoproteins of the high density lipoprotein in the carp (*Cyprinus carpio*). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. Jan 1;92(4):787-93.
- Al-Khshali, M. S., Abdulmajeed, O. M., and Naser, A. S. 2023. Effect of High Salt Concentrations on some Growth Characteristics and Feed Intake Rate of *Ctenopharyngodon idella* IOP Conference Series: Earth and Environmental Science,1213(1), 012081
- Afolabi P. R, Jahoor F, Jackson A. A, Stubbs J, Johnstone A. M, Faber P, Loble G, Gibney E, and Elia M. 2007. The effect of total starvation and very low energy diet in lean men on kinetics of whole body protein and five hepatic secretory proteins. American Journal of Physiology-Endocrinology and Metabolism. Dec;293(6):E1580-9.

<http://dx.doi.org/10.1046/j.1365-2109.2002.00689.x>

- Al-Khshali, M. S., Abdulmajeed, O. M., and Naser, A. S. 2023. Effect of High Salt Concentrations on some Growth Characteristics and Feed Intake Rate of *Ctenopharyngodon idella* IOP Conference Series: Earth and Environmental Science,1213(1), 012081
- Amthauer R, Villanueva J, Vera MI, Concha M, and Krauskopf M., 1989. Characterization of the major plasma apolipoproteins of the high density lipoprotein in the carp (*Cyprinus carpio*). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. Jan 1;92(4):787-93.

[https://doi.org/10.1016/0305-0491\(89\)90268-x](https://doi.org/10.1016/0305-0491(89)90268-x)

- Chowdhury, D. K. 2011. Optimal feeding Rate for Nile Tilapia (*Oreochromis niloticus*). M.Sc. Thesis. Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, pp:76.
- Concha M. I, Smith V. J, Castro K, Bastías A, Romero A, and Amthauer R. J. 2004. Apolipoproteins A-I and A-II are potentially important effectors of innate immunity in the teleost fish *Cyprinus carpio*. European Journal of Biochemistry. Jul;271(14):2984-90.
- Dietrich, M. A., Adamek, M., Bilińska, B., Hejmej, A., Steinhagen, D. and Ciereszko, A., 2014. Characterization, expression and antibacterial properties of apolipoproteins A from carp (*Cyprinus carpio* L.) seminal plasma. Fish & shellfish immunology, 41(2), pp.389-401.
<https://doi.org/10.1016/j.fsi.2014.09.020>
- Farhan, M. H., and Naser, A. S. 2024. Effect of Adding Zeolite in Water on The Growth Performance of Common Carp (*Cyprinus carpio* L.) Reared in Recirculation Aquaculture System. In IOP Conference Series: Earth and Environmental Science (Vol. 1371, No. 7, p. 072038). IOP Publishing.
doi:10.1088/1755-1315/1371/7/072038
- Jobling, M. 1993. Bioenergetics , feed intake and energy partitioning. In j. c. Ranking, and F. B. Jensen, Fish Ecophysiol (pp. 1-44). London: Chapman and Hall.
<http://dx.doi.org/10.11648/j.ajls.s.2017050301.15>
- Johnston L. D, Brown G, Gauthier D, Reece K, Kator H, and Van Veld P. 2008. Apolipoprotein AI from striped bass (*Morone saxatilis*) demonstrates antibacterial activity in vitro. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. Oct 1;151(2):167-75.
<https://doi.org/10.1016/j.cbpb.2008.06.011>
- Kondo H, Morinaga K, Misaki R, Nakaya M, and Watabe S., 2005. Characterization of the pufferfish Takifugu rubripes apolipoprotein multigene family. Gene. Feb 14;346:257-66.
<https://doi.org/10.1016/j.gene.2004.11.015>
- Lange S, Dodds A. W, Gudmundsdóttir S, Bambir SH, and Magnadóttir B. 2005. The ontogenetic transcription of complement component C3 and Apolipoprotein AI tRNA in Atlantic cod (*Gadus morhua* L.)—a role in development and homeostasis?. Developmental & Comparative Immunology. Jan 1;29(12):1065-77.
<https://doi.org/10.1016/j.dci.2005.03.009>
- Li, S.; Y. Jing,; J. Bai,; J. Sun,; J. Wu, and Fei, Z. 2018. Single nucleotide polymorphism of apolipoprotein genes and analysis of its correlation with growth traits in *Micropterus salmoides*. Journal of Agricultural Biotechnology, 26 (1) :132-139.
- Mráz, J. and Pickova, J. 2011. Factors influencing fatty acid composition of common carp (*Cyprinus carpio*) muscle. Neuroendocrinology Letters, 32 (Suppl 2):p.3-8. <https://doi.org/10.1111/j.1365-2109.2010.02609.x>
- Naser, A. S., O. M. Abdualmajeed, Jawad, H. S., and Çiçek, E. 2024. Effect of turbidity on fish morphology: A case study of swordtail, *Xiphophorus helleri*, during early ontogeny. International Journal of Aquatic Biology, 12(1), 68-72.
- Park K, Kim WS, Choi B, and Kwak I. S. 2021. Differential Expression of the Apolipoprotein AI Gene in Spotnape Ponyfish (*Nuchequula nuchalis*) Inhabiting Different Salinity Ranges at the Top of the Estuary and in the Deep-Bay Area of Gwangyang Bay, South Korea. Int J Environ Res Public Health.;18(20):10960.

- Qu M, Huang X, Zhang X, Liu Q, and Ding S. 2014. Cloning and expression analysis of apolipoprotein AI (ApoA-I) in the Hong Kong grouper (*Epinephelus akaara*). Aquaculture. Aug 20;432:85-96.
<https://doi.org/10.1016/j.aquaculture.2014.04.023>
- homeostasis. Physiology and Behavior, 95(1-2):161-167.
doi:10.1016/j.physbeh.2008.05.02
- Simon, T.; Cook,; V. R. Rao, A. and Weinberg, R. B. 2011. Impact of murine intestinal apolipoprotein A-IV expression on regional lipid absorption, gene expression, and growth. Journal of lipid Research, 52(11), pp.1984-1994.
<http://dx.doi.org/10.1194/jlr.M017418>
- Utne, F. 1979. Standard methods and terminology in finfish nutritions from: proc. World symp on finfish nutrition and fish feed technology. Hamburg, 20 – 23 June 1978. gl. 11 Berlin.
- Villarroel F, Bastías A, Casado A, Amthauer R, Concha M. I. and Apolipoprotein A. I, 2007. an antimicrobial protein in *Oncorhynchus mykiss*: evaluation of its expression in primary defence barriers and plasma levels in sick and healthy fish. Fish & shellfish immunology. Jul 1;23(1):197-209.
<https://doi.org/10.1016/j.fsi.2006.10.008>
- Sahoo, P. K., Amruta Mohapatra, A. M. and Jena, J.K., 2017. Apolipoproteins in fish: from lipid transport to innate immunity.
<https://doi.org/10.56093/ijans.v87i6.71348>
- Shen, L.; K.J Pearson,; Y.Xiong,; Lo, C.M.; P. Ts.; Woods, S.C.; Davidson, W.S. and Liu, M. 2008. Characterization of apolipoprotein A-IV in brain areas involved in energy
- Villarroel F, Bastías A, Casado A, Amthauer R, Concha M. I. Apolipoprotein AI, an antimicrobial protein in *Oncorhynchus mykiss*: evaluation of its expression in primary defence barriers and plasma levels in sick and healthy fish. Fish & shellfish immunology. 2007 Jul 1;23(1):197-209.
<https://doi.org/10.1016/j.fsi.2006.10.008>
- Wang X, Yu X, Tong J. Molecular characterization and growth association of two apolipoprotein A-Ib genes in common carp (*Cyprinus carpio*). International journal of molecular sciences. 2016 Sep 16;17(9):1569
<https://doi.org/10.3390/ijms17091569>.
- Watanabe, T. 1982. Lipid nutrition in fish. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 73(1), 3-15.
<http://dx.doi.org/10.33545/26174693.2024.v8.i4Sa.899>

علاقة تعدد الوراثية لجين البروتين الدهني A-1 مع بعض صفات النمو لإسماك الكارب الشائع

(*Cyprinus carpio* L.)

احمد وحيد العameri²

محمد شاكر الخشالي²

عثمان مصطفى عبدالمجيد¹

¹قسم الإنتاج الحيواني، كلية الزراعة، جامعة الأنبار ، الأنبار ، الرمادي ، العراق.

²كلية علوم الهندسة الزراعية، جامعة بغداد ، بغداد ، العراق.

المستخلص

أُجريت الدراسة لبحث علاقة تعدد المظاهر الوراثية A و B و C و D و E لجين البروتين الدهني (ApoA-1) مع بعض الصفات (معدل الزيادة الوزنية اليومية والكلية ومعدل وكفاءة التحويل الغذائي) في 70 عينة من أسماك الكارب الشائع *Cyprinus carpio*. كانت هناك فروق معنوية في صفات النمو للمظاهر الوراثية A و B و C و D لجين البروتين الدهني ApoA-1 بالمقارنة مع المظاهر الوراثي E. إذ أظهرت النتائج تفوق المظاهر الوراثي C معنويًا ($p \leq 0.05$) في معدلات الزيادة الوزنية اليومية والكلية وببلغ أعلى قيمة 0.56 و 39.42 غم/سمكة على التوالي، بينما انخفض المظاهر الوراثي E إلى أدنى قيمة 0.14 و 9.50 غم/سمكة على التوالي، من جهة أخرى سجل معدل التحويل الغذائي أعلى تأثير معنوي ($p \leq 0.05$) عند المظاهر الوراثي C وببلغ 5.13 مقارنةً مع المظاهر الوراثي E الذي سجل 9.6، كان أعلى تأثير معنوي ($p < 0.05$) في صفة كفاءة التحويل الغذائي عند المظاهر الوراثي C بمعدل 19.49% بالمقارنة مع المظاهر الوراثي E الذي بلغ 10.41%. نستنتج مما تقدم أنَّ جين ApoA-1 ربما له تأثير في تحسين صفات النمو الانتاجية في أسماك الكارب الشائع عن طريق تأثيره في الصفات الكمية المرتبطة بالمظاهر الوراثية.

كلمات مفتاحية: الكارب الشائع، الصفات الكمية، المظاهر الوراثية، صفات النمو، ApoA-1